a) Since $p^2 - q^2 = (p+q)(p-q)$, we look for p and q with

that is,

$$p = \frac{x+y}{2}, \quad q = \frac{x-y}{2}$$

 $x = p + q, \quad y = p - q,$

If x and y are both even or both odd, then x + y and x - y are both even, and hence p and q are both integers. This question asked to show that if x and y are both odd or both even then p and q are integers – not the converse, which is what some solutions that I saw did. The converse is also true of course.

b) Since p + q = p - q + 2q, either both p + q and p - q are odd or they are both even. If they are both odd then (p - q)(p + q) is odd and if they are both even then $(p - q)(p + q) \equiv 0 \mod 4$.

An alternative solution that I saw, also correct, used that each of p^2 and q^2 is either 0 mod 4 or 1 mod 4. That gives 4 choices for $(p \mod 4, q \mod 4)$, of which two give $p^2 - q^2 = 0 \mod 4$ and the other two give $\pm 1 \mod 4$. So 2 mod 4 is not possible.

2.

a) If x and y are both odd then $x^2 \equiv 1 \mod 4$ and $y^2 \equiv 1 \mod 4$ and so

$$z^2 = x^2 + y^2 \equiv 2 \mod 4.$$

So z is even. But then $4 \mid z^2$ and $z^2 \equiv 0 \mod 4$, which is a contradiction.

b) If x = y, then $x^2 + y^2 = 2x^2$, and $z^2 = 2x^2$ is divisible by an odd power of 2. But the maximal power of any prime dividing z^2 is even.

This is essentially the proof that $\sqrt{2}$ is irrational, because $z^2 = 2x^2$ for strictly positive integers z and x if and only if $\sqrt{2} = x/z$ for strictly positive integers x and z, that is, if and only if $\sqrt{2}$ is rational. The notation for the set of rational numbers is \mathbb{Q} , not \mathbb{Z} .

3. The table is as follows, ordered in increasing values of $p^2 + q^2$.

p + qi	$p^2 - q^2$	2pq	$p^2 + q^2$
2+i	3	4	5
3+2i	5	12	13
4+i	15	8	17
4 + 3i	7	24	25
5+2i	21	20	29
6+i	35	12	37
5 + 4i	9	40	41
7+2i	45	28	53
6 + 5i	11	60	61
8+i	63	16	65
7 + 4i	33	56	65
8 + 3i	55	48	73
7 + 6i	13	84	85
8 + 5i	39	80	89
8 + 7i	15	112	113

Some did not notice that it is only necessary to consider (p,q) such that exactly one of p and q is even. The question did specify this. If both p and q are odd or both even, then all three of the numbers $(p^2 - q^2, 2pq, p^2 + q^2)$ in the Pythagorean triple are even.

4. The non-prime values of $p^2 + q^2$ are $25 = 5 \times 5$, $65 = 5 \times 13$ and $85 = 5 \times 17$.

The three primes 5, 13 and 17 occur earlier in the table. There are two rows with $p^2 + q^2 = 65$, and there would be two with $p^2 + q^2 = 85$, if the table were continued. The reason is that, if $p^2 + q^2$ is not a prime integer, then $(p + qi)(p - qi) = n_1n_2$ for integers $n_1 > 1$ and $n_2 > 1$. But then by unique factorisation of $\mathbb{Z}[i]$, it cannot be the case that both p + qi and p - qi are prime. Since complex conjugation preserves multiplication, they are both not prime. So there are p_1 , q_1 , p_2 and $q_2 \in \mathbb{Z}$ such that

$$p + qi = (p_1 + q_1i)(p_2 + q_2i)$$

Since p and q are co-prime, all of p_1 , q_1 , p_2 and q_2 are non-zero. So

$$(p+qi)^2 = (p_1+q_1i)^2(p_2+q_2i)^2.$$

If $p_1 + q_1 i \neq p_2 + q_2 i$, then we can obtain r + is with $|r + is|^2 = |p + iq|^2$ and with $r \neq 0$, $s \neq 0$ and $\{r, s\} \not\subset \{\pm p, \pm q\}$ by taking

$$r + is = (p_1 + iq_1)(p_2 + iq_2)$$

Now consider the example of $65 = 5 \times 13$. The rows with 5 and 13 in the last column have 2 + i and and 3 + 2i respectively in the first columns. We have

$$(2+i)(3+2i) = 4+7i, (2+i)(3-2i) = 8-i$$

Since |4 + 7i| = |7 + 4i|, and |8 - i| = |8 + i|, this confirms that

$$|7+4i|^2 = |8+i|^2$$

Now consider $85 = 5 \times 17$. The row with 17 in the last column has 4 + i in the first entry. We have

$$(2+i)(4+i) = 7+6i, (2+i)(4-i) = 9+2i$$

It is easily checked that

$$|7+6i|^2 = 85 = |9+2i|^2.$$

Of course (9,2) is not in the table given, but does appear if the table is extended. We do not get a second triple from $25 = 5^2$, because 25 is not a product of distinct primes. But the row ending in 5 has 2 + i in the first entry, and the row ending in 25 has 4 + 3i in the first entry. It is easily checked that

$$(2+i)^2 = 3+4i$$

and of course |3 + 4i| = |4 + 3i|.

5.

- a) If one of a and b is odd and the other is even, then $a^2 5b^2$ is odd. So either both a and b are odd or both even. If they are both even then $a^2 \equiv 0 \mod 4$ and $b^2 \equiv 0 \mod 4$, and hence $a^2 - 5b^2 \equiv 0 \mod 4$. If they are both odd then $a^2 \equiv 1 \mod 8$ and $b^2 \equiv 1 \mod 8$. Since also $5 \equiv 1 \mod 4$, we have $a^2 - 5b^2 \equiv 1 - 5 \times 1 \equiv 4 \mod 8$.
- b) Suppose 2 = cd for c and $d \in \mathbb{Z}[\sqrt{5}]$ or $c, d \in \mathcal{O}[\sqrt{5}]$. Then v(2) = 4 = v(c)v(d). By a) v cannot take the value ± 2 . If v(c) = 2 and $c \in \mathcal{O}[\sqrt{5}] \setminus \mathbb{Z}[\sqrt{5}]$, then this follows from $c = (e_1 + e_2\sqrt{5})/2$ where e_1 and e_2 are both odd integers, so that $e_1^2 5e_2^2$ cannot take the value ± 8 . So without loss of generality v(c) = 4 and v(d) = 1, that is, d is a unit in $\mathbb{Z}[\sqrt{5}]$ (or $\mathcal{O}[\sqrt{5}]$. So 2 is irreducible in $\mathbb{Z}[\sqrt{5}]$ (or $\mathcal{O}[\sqrt{5}]$).

It is also possible to argue directly that if $2 = (c_1 + c_2\sqrt{5})(d_1 + d_2\sqrt{5})$ for integers c_1 , c_2 , d_1 and d_2 , with both c_1 and $c_2 \neq 0$, then $(d_1, d_2) = k(c_1, -c_2)$ for an integer k. I saw solutions which appeared to assume this, but without proof. It can be proved, but is not very quick and easy. To see it:

$$2 = (c_1d_1 + 5c_2d_2 + \sqrt{5}(c_2d_1 + c_1d_2))$$

and hence $c_2d_1 + c_1d_2 = 0$. So $d_2/c_2 = -d_1/c_1$ and $(d_1, d_2) = (d_1/c_1)(c_1, -c_2)$ Since c_1 and c_2 have to be coprime, d_1/c_1 must be an integer. A similar result holds if c_1 , $c_2 d_1$ and d_2 are half integers. In that case, d_1/c_1 can be a half integer.

c)

$$(\sqrt{5} - 1)(1 + \sqrt{5}) = 4 = 2^2$$

2 and $\sqrt{5}-1$ and $\sqrt{5}+1$ are all inequivalent irreducibles in $\mathbb{Z}[\sqrt{5}]$, because the only units in $\mathbb{Z}[\sqrt{5}]$ are ± 1 . But $(\sqrt{5} \pm 1)/2$ are units in $\mathcal{O}[\sqrt{5}]$, and so since

$$2 = (\sqrt{5} - 1)((\sqrt{5} + 1)/2) = (\sqrt{5} + 1)((\sqrt{5} - 1)/2)$$

all three of 2, $\sqrt{5}+1$ and $\sqrt{5}-1$ are equivalent irreducibles in $\mathcal{O}[\sqrt{5}]$ (in fact, equivalent primes, because $\mathcal{O}[\sqrt{5}]$ is a unique factorisation domain).