MATH342 Feedback and Solutions 9

1.

a) Since $p^{2}-q^{2}=(p+q)(p-q)$, we look for p and q with

$$
x=p+q, \quad y=p-q
$$

that is,

$$
p=\frac{x+y}{2}, \quad q=\frac{x-y}{2} .
$$

If x and y are both even or both odd, then $x+y$ and $x-y$ are both even, and hence p and q are both integers. This question asked to show that if x and y are both odd or both even then p and q are integers - not the converse, which is what some solutions that I saw did. The converse is also true of course.
b) Since $p+q=p-q+2 q$, either both $p+q$ and $p-q$ are odd or they are both even. If they are both odd then $(p-q)(p+q)$ is odd and if they are both even then $(p-q)(p+q) \equiv 0 \bmod 4$.
An alternative solution that I saw, also correct, used that each of p^{2} and q^{2} is either $0 \bmod 4$ or $1 \bmod 4$. That gives 4 choices for $(p \bmod 4, q \bmod 4)$, of which two give $p^{2}-q^{2}=0 \bmod 4$ and the other two give $\pm 1 \bmod 4$. So $2 \bmod 4$ is not possible.
2.
a) If x and y are both odd then $x^{2} \equiv 1 \bmod 4$ and $y^{2} \equiv 1 \bmod 4$ and so

$$
z^{2}=x^{2}+y^{2} \equiv 2 \quad \bmod 4
$$

So z is even. But then $4 \mid z^{2}$ and $z^{2} \equiv 0 \bmod 4$, which is a contradiction.
b) If $x=y$, then $x^{2}+y^{2}=2 x^{2}$, and $z^{2}=2 x^{2}$ is divisible by an odd power of 2 . But the maximal power of any prime dividing z^{2} is even.
This is essentially the proof that $\sqrt{2}$ is irrational, because $z^{2}=2 x^{2}$ for strictly positive integers z and x if and only if $\sqrt{2}=x / z$ for strictly positive integers x and z, that is, if and only if $\sqrt{2}$ is rational. The notation for the set of rational numbers is \mathbb{Q}, not \mathbb{Z}.
3. The table is as follows, ordered in increasing values of $p^{2}+q^{2}$.

$p+q i$	$p^{2}-q^{2}$	$2 p q$	$p^{2}+q^{2}$
$2+i$	3	4	5
$3+2 i$	5	12	13
$4+i$	15	8	17
$4+3 i$	7	24	25
$5+2 i$	21	20	29
$6+i$	35	12	37
$5+4 i$	9	40	41
$7+2 i$	45	28	53
$6+5 i$	11	60	61
$8+i$	63	16	65
$7+4 i$	33	56	65
$8+3 i$	55	48	73
$7+6 i$	13	84	85
$8+5 i$	39	80	89
$8+7 i$	15	112	113

Some did not notice that it is only necessary to consider (p, q) such that exactly one of p and q is even. The question did specify this. If both p and q are odd or both even, then all three of the numbers $\left(p^{2}-q^{2}, 2 p q, p^{2}+q^{2}\right)$ in the Pythagorean triple are even.
4. The non-prime values of $p^{2}+q^{2}$ are $25=5 \times 5,65=5 \times 13$ and $85=5 \times 17$.

The three primes 5,13 and 17 occur earlier in the table. There are two rows with $p^{2}+q^{2}=65$, and there would be two with $p^{2}+q^{2}=85$, if the table were continued. The reason is that, if $p^{2}+q^{2}$ is not a prime integer, then $(p+q i)(p-q i)=n_{1} n_{2}$ for integers $n_{1}>1$ and $n_{2}>1$. But then by unique factorisation of $\mathbb{Z}[i]$, it cannot be the case that both $p+q i$ and $p-q i$ are prime. Since complex conjugation preserves multiplication, they are both not prime. So there are p_{1}, q_{1}, p_{2} and $q_{2} \in \mathbb{Z}$ such that

$$
p+q i=\left(p_{1}+q_{1} i\right)\left(p_{2}+q_{2} i\right)
$$

Since p and q are co-prime, all of p_{1}, q_{1}, p_{2} and q_{2} are non-zero. So

$$
(p+q i)^{2}=\left(p_{1}+q_{1} i\right)^{2}\left(p_{2}+q_{2} i\right)^{2}
$$

If $p_{1}+q_{1} i \neq p_{2}+q_{2} i$, then we can obtain $r+i s$ with $|r+i s|^{2}=|p+i q|^{2}$ and with $r \neq 0, s \neq 0$ and $\{r, s\} \not \subset\{ \pm p, \pm q\}$ by taking

$$
r+i s=\left(p_{1}+i q_{1}\right) \overline{\left(p_{2}+i q_{2}\right)}
$$

Now consider the example of $65=5 \times 13$. The rows with 5 and 13 in the last column have $2+i$ and and $3+2 i$ respectively in the first columns. We have

$$
(2+i)(3+2 i)=4+7 i, \quad(2+i)(3-2 i)=8-i
$$

Since $|4+7 i|=|7+4 i|$, and $|8-i|=|8+i|$, this confirms that

$$
|7+4 i|^{2}=|8+i|^{2}
$$

Now consider $85=5 \times 17$. The row with 17 in the last column has $4+i$ in the first entry. We have

$$
(2+i)(4+i)=7+6 i, \quad(2+i)(4-i)=9+2 i
$$

It is easily checked that

$$
|7+6 i|^{2}=85=|9+2 i|^{2}
$$

Of course $(9,2)$ is not in the table given, but does appear if the table is extended. We do not get a second triple from $25=5^{2}$, because 25 is not a product of distinct primes. But the row ending in 5 has $2+i$ in the first entry, and the row ending in 25 has $4+3 i$ in the first entry. It is easily checked that

$$
(2+i)^{2}=3+4 i
$$

and of course $|3+4 i|=|4+3 i|$.
5.
a) If one of a and b is odd and the other is even, then $a^{2}-5 b^{2}$ is odd. So either both a and b are odd or both even. If they are both even then $a^{2} \equiv 0 \bmod 4$ and $b^{2} \equiv 0 \bmod 4$, and hence $a^{2}-5 b^{2} \equiv 0 \bmod 4$. If they are both odd then $a^{2} \equiv 1 \bmod 8$ and $b^{2} \equiv 1 \bmod 8$. Since also $5 \equiv 1 \bmod 4$, we have $a^{2}-5 b^{2} \equiv 1-5 \times 1 \equiv 4 \bmod 8$.
b) Suppose $2=c d$ for c and $d \in \mathbb{Z}[\sqrt{5}]$ or $c, d \in \mathcal{O}[\sqrt{5}]$. Then $v(2)=4=v(c) v(d)$. By a) v cannot take the value ± 2. If $v(c)=2$ and $c \in \mathcal{O}[\sqrt{5}] \backslash \mathbb{Z}[\sqrt{5}]$, then this follows from $c=\left(e_{1}+e_{2} \sqrt{5}\right) / 2$ where e_{1} and e_{2} are both odd integers, so that $e_{1}^{2}-5 e_{2}^{2}$ cannot take the value ± 8. So without loss of generality $v(c)=4$ and $v(d)=1$, that is, d is a unit in $\mathbb{Z}[\sqrt{5}]$ (or $\mathcal{O}[\sqrt{5}]$. So 2 is irreducible in $\mathbb{Z}[\sqrt{5}]$ (or $\mathcal{O}[\sqrt{5}]$).
It is also possible to argue directly that if $2=\left(c_{1}+c_{2} \sqrt{5}\right)\left(d_{1}+d_{2} \sqrt{5}\right)$ for integers c_{1}, c_{2}, d_{1} and d_{2}, with both c_{1} and $c_{2} \neq 0$, then $\left(d_{1}, d_{2}\right)=k\left(c_{1},-c_{2}\right)$ for an integer k. I saw solutions which appeared to assume this, but without proof. It can be proved, but is not very quick and easy. To see it:

$$
2=\left(c_{1} d_{1}+5 c_{2} d_{2}+\sqrt{5}\left(c_{2} d_{1}+c_{1} d_{2}\right)\right.
$$

and hence $c_{2} d_{1}+c_{1} d_{2}=0$. So $d_{2} / c_{2}=-d_{1} / c_{1}$ and $\left(d_{1}, d_{2}\right)=\left(d_{1} / c_{1}\right)\left(c_{1},-c_{2}\right)$ Since c_{1} and c_{2} have to be coprime, d_{1} / c_{1} must be an integer. A similar result holds if $c_{1}, c_{2} d_{1}$ and d_{2} are half integers. In that case, d_{1} / c_{1} can be a half integer.
c)

$$
(\sqrt{5}-1)(1+\sqrt{5})=4=2^{2}
$$

2 and $\sqrt{5}-1$ and $\sqrt{5}+1$ are all inequivalent irreducibles in $\mathbb{Z}[\sqrt{5}]$, because the only units in $\mathbb{Z}[\sqrt{5}]$ are ± 1. But $(\sqrt{5} \pm 1) / 2$ are units in $\mathcal{O}[\sqrt{5}]$, and so since

$$
2=(\sqrt{5}-1)((\sqrt{5}+1) / 2)=(\sqrt{5}+1)((\sqrt{5}-1) / 2
$$

all three of $2, \sqrt{5}+1$ and $\sqrt{5}-1$ are equivalent irreducibles in $\mathcal{O}[\sqrt{5}]$ (in fact, equivalent primes, because $\mathcal{O}[\sqrt{5}]$ is a unique factorisation domain).

