MATH342 Feedback and Solutions 8

1. If $a=\left(a_{1}, a_{2}\right) \in H_{1} \times H_{2}$, then by definition of the multiplication in $H_{1} \times H_{2}$,

$$
a^{n}=\left(a_{1}^{n}, a_{2}^{n}\right)
$$

The identity element in $H_{1} \times H_{2}$ is $(1,1)$. Let n_{1} and n_{2} be the orders of a_{1} and a_{2} respectively. We have

$$
\begin{aligned}
a^{n}=(1,1) \Leftrightarrow & a_{1}^{n}=1 \wedge a_{2}^{n}=1 \quad \Leftrightarrow n_{1}\left|n \wedge n_{2}\right| n \\
& \Leftrightarrow \operatorname{lcm}\left(n_{1}, n_{2}\right) \mid n .
\end{aligned}
$$

So the order of $\left(a_{1}, a_{2}\right)$ is $l c m\left(n_{1}, n_{2}\right)$ as required.
We have $56=7 \times 2^{3}$, and so $G_{56} \cong G_{7} \times G_{8}$. We know that G_{7} is cyclic of order $7-1=6$ (because 7 is prime) and $G_{8}=\{1,3,5,7\}$ with

$$
3^{2} \equiv 5^{2} \equiv 7^{1} \equiv 1 \quad \bmod 8
$$

So the elements of G_{8} are all of order 2 , apart from 1 which is of order 1 and the possible orders of the elements of the cyclic group G_{7} are the divisors of 6 , that is,

$$
1, \quad 2,3,6 .
$$

Applying question 1 to the product $G_{7} \times G_{8}$, the possible orders of elements of G_{56} are exactly the same.
Note that the answer to this question is nothing to do with the divisors of 56 - because the orders of elements of G_{7} are the divisors of 6 , not 7 . It also may be a bit surprising that evey element of G_{8}, apart from 1 , has order 2 - there are no elements of order 4.

2.

a) $x^{4} \equiv 1 \bmod 5$ for all $x \in \mathbb{Z}_{5}^{*}$. So $x^{4}-1$ is divisible by $x-1, x-2, x-3$ and $x-4$ in $\mathbb{Z}_{5}[x]$ and

$$
x^{4}-1=(x-1)(x-2)(x-3)(x-4)
$$

b) By inspection $1^{2}+1+1 \equiv 0 \bmod 3$ so $x-1 \equiv x+2$ must be a factor. Again by inspection we see that $x^{2}+x+1=(x+2)^{2} \bmod 3$.
3. The prime factorisations are

$$
37=37, \quad 38=2 \times 19,40=2^{3} \times 5, \quad 41=41,44=2^{2} \times 11, \quad 45=3^{2} \times 5
$$

- We have $37 \equiv 1 \bmod 4$ and $37=6^{2}+1$.
- Since $19 \equiv 3 \bmod 4,38$ does not satisfy the necessary condition for being a sum of two integer squares. In any case if $38=a^{2}+b^{2}$ then one of a and b has to be ± 5 or ± 6, because $4^{2}=16<$ $38 / 2=19$ and $7^{2}>38$. But $38-6^{2}=2$ and $38-5^{2}-13$, and neither 2 nor 13 is a square of an integer.
- We have $5 \equiv 1 \bmod 4$ and $40=6^{2}+2^{2}$.
- We have $41 \equiv 1 \bmod 4$ and $41=5^{2}+4^{2}$
- We have $11 \equiv 3 \bmod 4$. In any case, if $44=a^{2}+b^{2}$ then, once again one of a and b has to be ± 5 or ± 6. But neither $44-25=19$ nor $44-36=8$ is the square of an integer.
- We have $5 \equiv 1 \bmod 4$ and $45=6^{2}+3^{2}$.

In the case of 38 and 44, I wanted to see a direct proof that the number was not a sum of two integer squares.
4.

$$
\begin{gathered}
x^{3}-1=(x-1)\left(x^{2}+x+1\right), \quad x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right) \\
x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \\
x^{12}-1=\left(x^{6}-1\right)\left(x^{6}+1\right)=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
\end{gathered}
$$

In each case these polynomials are irreducible in $\mathbb{Z}[x]$ because ± 1 are not zeros of the three quadratics $x^{2}+1, x^{2}+x+1$ and $x^{2}-x+1$. In fact those three quadratics do not have any real roots.

Now we show that $x^{4}-x^{2}+1$ is irreducible in $\mathbb{Z}[x]$. Once again, ± 1 is not a zero of this polynomial. So if this polynomial is not irreducible, it must factorise as a product of two quadratics with integer coefficients. Because the coefficients of x^{4} is 1 and the constant term is 1 , and because the coefficients of x and x^{3} are 0 , we would have

$$
x^{4}-x^{2}+1=\left(x^{2}+a x+1\right)\left(x^{2}-a x+1\right) \quad \text { or } \quad x^{4}-x^{2}+1=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)
$$

Then the coefficient of x^{2} on the right-hand side is $-a^{2}-2$ or $-a^{2}+2$, which has to be equal to 1 , that is, we need $a^{2}=-1$ or $a^{2}=3$. Both of these are impossible for $a \in \mathbb{Z}$.

Using the inductive definition

$$
x^{n}-1=\prod_{d \min n, d \geq 1} \psi_{d}(x)
$$

the cyclotomic polynomials are

$$
\psi_{3}(x)=x^{2}+x+1, \quad \psi_{4}(x)=x^{2}+1, \quad \psi_{6}(x)=x^{2}-x+1, \quad \psi_{1} 2(x)=x^{4}-x^{2}+1
$$

It is not part of the definition that the cyclotomic polynomials are irreducible in $\mathbb{Z}[x]$ - although it is a theorem (not proved in this course) that they are.
5.
a) We have

$$
c_{1}^{2}=\left(c_{1}+\frac{1}{2}\right)^{2}-\left(c_{1}+\frac{1}{2}\right)+\frac{1}{4}
$$

and similarly for c_{2}. So there is an integer n such that

$$
c_{1}^{2}-c_{2}^{2}=n+\frac{1}{4}-\frac{5}{4}=n-1 \in \mathbb{Z}
$$

b) Since $c=c_{1}+c_{2} \sqrt{5}$ divides n in $\mathcal{O}[\sqrt{5}]$, there is $d \in \mathcal{O}[\sqrt{5}]$ such that $n=c d$. Then $\theta(n)=\theta(c) \theta(d)$. But $\theta(n)=n$ and $\theta(c)=c_{1}-c_{2} \sqrt{D}$. So since $\theta(d) \in \mathcal{O}[\sqrt{5}]$, we see that $c_{1}-c_{2} \sqrt{5}$ divides n.
c) Now $c=c_{1}+c_{2} \sqrt{5}$ is a unit if and only if there exists $d \in \mathcal{O}[\sqrt{5}]$ with $c d=1$. But

$$
1=\theta(1)=\theta(c d)=\theta(c) \theta(d)
$$

So c is a unit if and only if $\theta(c)=c_{1}-c_{2} \sqrt{5}$ is. So if c is a unit then, for d as above

$$
1=c d \theta(c) \theta(d)=\left(c_{1}^{2}-5 c_{2}^{2}\right) d \theta(d)
$$

So since $d \theta(d)$ is an integer, it must be the case that $c_{1}^{2}-5 c_{2}^{2}= \pm 1$. Conversely, if $c_{1}^{2}-5 c_{2}^{2}= \pm 1$ then $\left(c_{1}+c_{2} \sqrt{5}\right)\left(\pm\left(c_{1}+c_{2} \sqrt{5}\right)\right)=1$ and $c_{1}+c_{2} \sqrt{5}$ is a unit.

