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1. The divisors of 12 are 1, 2, 3, 4, 6 and 12. We have

φ(1) = 1 = φ(2) = 1, φ(3) = φ(4) = 2, φ(6) = 2, φ(12) = 4

and
1 + 1 + 2 + 2 + 2 + 4 = 12.

2. By Fermat’s Little Theorem, if a ∈ Z+ is coprime to 3 then a2 ≡ 1 mod 3 and hence an ≡ 1 mod 3 whenever
n is even. All of 58, 26 and 6 are even, and 5 is coprime to 3. So

558 + 526 + 56 ≡ 1 + 1 + 1 ≡ 0 mod 3,

that is, 3 divides 558 + 526 + 56.

3.

a) φ(5) = 4 and 1 < 3 < 5 So |3|5 = 2 or 4. Since 32 ≡ −1 mod 5 we have 34 ≡ 1 mod 5 and |3|5 = 4.

b) Since 9 ≡ 1 mod 4 we have |9|4 = 1

c) φ(7) = 6 and 1 < 2 < 7. So |2|7 = 2, 3 or 6. Since 22 = 4 and 23 ≡ 1 mod 7 we have |2|7 = 3

d) 10 ≡ −1 mod 11, so |10|11 = 2.

e) |24|11 = |2|11. Since φ(11) = 10 and 1 < 2 < 11, we must have |2|11 = 2, 5 or 10. Since 22 = 4 and 25 = 32 ≡ −1
mod 11, we have |24|11 = |2|11 = 10.

So only 3 mod 5 and 24 mod 11 = 2 mod 11 are primitive
It really helps to use 24 ≡ 2 mod 11. Also in order to show |2|11 = 10 we only need to show that |2|11 is not equal to 2

or 5.

4. Since φ(9) = 6 and φ(6) = 2, there must be two primitive roots mod 9, and if a is one of them, a5 must be the
other, because 1 and 5 are the numbers ≥ 1 and < 6 which are coprime to 6. We have 22 = 4 and 23 ≡ −1 mod 9.
So 2 is a primitive root and 25 = 32 ≡ 5 mod 9 is the other one.

5. Since G35
∼= G7 ×G5, the number of elements of G35 of order 12 is the same as the number of elements (x, y)

of G7×G5 of order 12. Let n1 be the order of x and n2 the order of y. Then n1 is a divisor of 6 and n2 is a divisor
of 4. The order of (x, y) is lcm(n1, n2), which is 12 if and only if n2 = 4 and n1 = 3 or 6. There are 2 = φ(4)
elements of G5 of order 4, and 2 = φ(3) elements of G7 of order 3, and 2 = φ(6) of order 6. So there are 8 elements
of G7 ×G5 of order 12 and 8 elements of G35 of order 12.

It was not necessary to identify elements of G35 of order 12, nor was it necessary to identify the elements of G5 of order

4, or the number of elements of G7 of order 3 or 6. All that was needed was: the number of elements of G5 of order 4 and

the number of elements of G7 of order 3 or 6.

6. In each case the solution x must be in G9 because if x is not coprime to 9 then xn cannot be either, for any
n ≥ 1. Since φ(9) = φ(32) = 6, we have x6 ≡ 1 for all x ∈ G9 and hence

a) x7 ≡ 1 mod 9 ⇒ x ≡ 1 mod 9.

b) x15 ≡ 1 mod 9 ⇒ x3 ≡ 1 mod 9. There are φ(6/3) = 2 elements of order 3 and one element of order 1
(which) divides 3 Since 2 is a primitive root we have 43 ≡ 1 mod 9 and (−2)3 ≡ 1 mod 9. So the solutions are

x ≡ 4 mod 9, x ≡ −2 ≡ 7 mod 9, x ≡ 1 mod 9.

It really helps with the computation, in both parts, to use x6 ≡ 1 mod 9 — which follows from Euler’s Theorem, of

course.

7. We have 8 = 23 ≡ −1 mod 9 So 82 ≡ 1 mod 9 and |8|9 = 2. So |8|27 = 2 or 3 × 2 = 6. But 82 = 64 ≡ 10
mod 27. So |8|27 = 6.

It is necessary to check that |8|27 6= 2. But this is true because 82 = 64 ≡ 10 mod 27.



We have 14 ≡ −3 mod 17. Since φ(17) = 16 = 24 the possible values of |14|17 are 2k for 1 ≤ k ≤ 4. We have

(−3)2 = 9, 92 ≡ −4 mod 17, (−4)2 ≡ −1 mod 17, (−1)2 = 1.

So |14|17 = 16 and |14|289 = 16 or 16× 17. Now we show that |14|289 6= 16. We have

1416 = (17− 3)16 ≡ (−3)16 + 16× 17× (−3)15 ≡ (5× 17− 4)4 + 17× 315 mod 289

≡ 256− 20× 17× 64 + 17× 6 ≡ −33 + 17(−3× 64 + 6) ≡ 1− 34 + 17(3× 4 + 6)

≡ 1 + 17× 16 ≡ 273 mod 289

At one stage we used 315 ≡ 3−1 ≡ 6 mod 17. So

|14|289 = 16× 17 = 272.

Once again, even for computing |14|17 it helps to work with numbers as small as possible. So it is easier to compute with

−3 mod 17 than with 14 mod 17. To show that |14|17 = | − 3|17| = 16 we only need to show that | − 3|17 is not equal to 2,

4 or 8. The solution above shows how it is possible to do the calculation “by hand”. But it was OK to use the Big Number

Calculator (or any calculator, but it is a bit long-winded with the university calculator).

8.

a) First we consider divisibility by 3. Since φ(3) = 2, and p is prime and not 3, by Fermat’s Little Theorem, p2 ≡ 1
mod 3 and hence pn ≡ 1 mod 3 if n is even and pn ≡ p mod 3 if n is odd. Now let p ≡ 2 mod 3. Then
3 | (pn − 1) if and only if n is even. Since 3 does not divide p − 1 and p − 1 does divide pn − 1, it is also true
that 3 | (pn − 1)/(p− 1) if and only if n is even. Now let p ≡ 1 mod 3. Then pk ≡ 1 mod 3 for all k ≥ 0 and

pn − 1

p− 1
=

n−1∑
k=0

pk ≡ n mod 3.

So in this case 3 divides (pn − 1)/(p− 1) if and only if 3 | n.

b) Now we consider divisibility by 9. Note that p ≡ −1 mod 3 splits into the cases p ≡ −1 mod 9 or p ≡ 2 mod 9
or p ≡ 5 mod 9. Let p ≡ −1 mod 9. Then p2 ≡ 1 mod 9 and pn ≡ 1 mod 9 if and only if n is even. Since 3
does not divide p − 1, it follows that 9 divides (pn − 1)/(p − 1)if and only if n is even. The case of p ≡ 2 or 5
mod 9 is similar. By question 4, |2|9 = |5|9 = 6 and so in these cases pn ≡ 1 if and only if n is divisible by 6,
and since p−1 is not divisible by 3, it follows that pn−1)/(p−1) is divisible by 9 if and only if n is divisible by 6.

The case p ≡ 1 mod 3 splits into the cases of p ≡ 1 mod 9 or p ≡ 4 mod 9 or p ≡ 7 mod 9 If p ≡ 1 mod 9,
then as in the case of p ≡ 1 mod 3 in part a) we have (pn − 1)/(p− 1) ≡ n mod 9, and hence (pn − 1)/(p− 1)
is divisible by 9 if and only if n is. If p ≡ 4 or 7 mod 3 then by part a), if (pn− 1)/(p− 1) is divisible by 3 then
3 | n and p3 ≡ 1 mod 3 and we can write n = 3k for some k ∈ Z+. But then (pn− 1)/(p3− 1) = k mod 3. We
can check that

(p3 − 1)/(p− 1) ≡ 3 mod 9.

So
(p3k − 1)/(p− 1) ≡ 3k mod 9

and so (pn− 1)/(p− 1) is divisible by 9 if and only if k is divisible by 3, that is, if and only if n is divisible by 9.

As the answer shows, this was a longer question. Most of the others were quite short – or, at least, it was possible to

give short correct answers.


