MATH342 Feedback and Solutions 5

1.

a) Since

$$
348=3 \times 116=3 \times 2^{2} \times 29
$$

we have

$$
\phi(348)=2 \times 2(2-1) \times 28=112
$$

b) Since

$$
34606=2 \times 17303=2 \times 11 \times 1573=2 \times 11^{2} \times 143=2 \times 11^{3} \times 13
$$

we have

$$
\phi(34606)=1 \times 11^{2} \times 10 \times 12=14520
$$

2. Since 7 is prime, by Fermat's Little Theorem, $n^{7} \equiv n \bmod 7$ for any $n \in \mathbb{Z}$. So $n^{13}=n^{6} \times n^{7} \equiv n^{6} \times n$ $\bmod 7 \equiv n^{7} \bmod 7 \equiv n \bmod 7$.

On this and other questions I had a number of answers that were correct, but used calculation rather than referring to Fermat's Little Theorem or Euler's Theorem.
3. If 3 does not divide n then by Fermat's Little Theorem, since 3 is prime, $n^{2} \equiv 1 \bmod 3$ and hence also $n^{6}=\left(n^{2}\right)^{3} \equiv 1 \bmod 3$. But $1091=1089+2 \equiv 2 \bmod 3$. So if 3 does not divide n we have $n^{6}+1091 \equiv 1+2 \equiv 0$ $\bmod 3$, that is, 3 divides $n^{6}+1091$.
4. Both 2 and 3 are coprime to 13 , and 13 is prime. So by Fermat's Little Theorem, $2^{12}=1 \bmod 13$ and $3^{12} \equiv 1$ $\bmod 13$. So

$$
2^{70}=2^{60+10} \equiv 2^{10}=1024=10+1014=10+13 \times 78 \equiv 10 \quad \bmod 13
$$

and

$$
3^{70}=3^{60+10} \equiv 3^{10}=\left(3^{3}\right)^{3} \times 3 \equiv 1 \times 3 \bmod 13
$$

So

$$
2^{70}+3^{70} \equiv 10+3 \quad \bmod 13 \equiv 0 \quad \bmod 13
$$

that is, 13 divides $2^{70}+3^{70}$.
I was expecting some detail in the calculation of 2^{10} and 3^{10} above. However it does help to use Fermat's Little Theorem
5. We have $1000=5^{3} \times 2^{3}$ and so

$$
\phi(1000)=\phi\left(2^{3}\right) \times \phi\left(5^{3}\right)=4 \times 5^{2} \times 4=400
$$

So since both 7 and 3 are coprime to 1000, Euler's theorem gives

$$
7^{400} \equiv 1^{4} \equiv 1 \quad \bmod 1000
$$

and similarly for 3^{400}. So

$$
7^{400}-3^{400} \equiv 1-1 \equiv 0 \quad \bmod 1000
$$

Here it was expected that Euler's Theorem would be used. Otherwise it is a very heavy calculation.
6. We have $100=5^{2} \times 2^{2}$. Since $\phi\left(5^{2}\right)=5 \times 4=20$ and $\phi(4)=2$, we have $b^{20}=1$ for all $b \in G_{25}$ and $c^{2}=1$ for all $c \in G_{4}$ by Euler's Theorem, and hence, since 2^{2} and 5^{2} are coprime, $a^{20}=1$ for all $a \in G_{100}$.

As the hint suggested, this comes out easily if Euler's Theorem is used $\bmod 4$ and $\bmod 25$, rather than jusr mod 100.
7. Suppose that p is prime and $p \mid n$ where $n=2^{17}-1=131071$. Then $2^{17} \equiv 1 \bmod p$. Since 17 is prime, the order of 2 must be 17 . But by Fermat's Little Theorem, since 2 is coprime to p (because p must be an odd prime), we have $2^{p-1} \equiv 1 \bmod p$, and hence $17 \mid p-1$, that is, $p \equiv 1 \bmod 17$. Now \sqrt{n} is between 362 and 363 . So if n is not prime it must be divisible by some prime $p \leq 361$ with $p \equiv 1 \bmod 17$, and $p \equiv 1 \bmod 2($ since p is odd) so that $p \equiv 1 \bmod 34$. So p must be one of:

$$
35,69,103,137,171,205,239,273,307,341
$$

Of these the only primes are
103, 137, 239, 307.

All the others are divisible by 3 or 5 or 11 (with $341=31 \times 11$). None of the primes divides $n=2^{17}-1$ In fact

$$
n=1272 \times 103+55=137 \times 956+99=548 \times 239+99=426 \times 307+289 .
$$

I was expecting the four primes that have to be considered to be identified, and some sort of explanation - and some explanation of why they do not divide $2^{17}-1$. Writing down the first one or two decimal places after dividing by them was enough.
8. Let

$$
n=\prod_{k=1}^{r} p_{k}^{m_{k}}
$$

be the prime factorisation of n with $p_{k}<p_{k+1}$ for all k. The general formula for $\phi(n)$ is

$$
\phi(n)=\prod_{k=1}^{r} p_{k}^{m_{k}-1}\left(p_{k}-1\right)
$$

If $p_{k} \geq 5$ then $p_{k}-1$ is even and $p_{k}-1=2 \times\left(p_{k}-1\right) / 2$ where $\left(p_{k}-1\right) / 2 \geq 2$. So $p_{k}-1$ has at least 2 prime factors whenever $p_{k} \geq 5$.
(i) Suppose that $r \geq 3$. Then for at least one k, say $k=3$, we have $p_{3} \geq 5$. There is at least one other, say $k=2$, for which $p_{2} \geq 3$. Then $p_{3}-1$ factorises as the product of at least 2 prime factors, and $p_{2}-1$ as a product of at least one (and at least two if $p_{2}>3$). So then $\phi(n)$ has at least 3 prime factors, which is a contradiction. So $r \leq 2$.
(ii) Now suppose $r=2$. Then $\left(p_{1}-1\right)\left(p_{2}-1\right)$ still has at least 3 prime factors if $p_{1} \geq 3$ and $p_{2}-1 \geq 5$. So without loss of generality $p_{1}=2$ and $p_{2} \geq 3$. If $p_{2} \geq 5$ and $n_{2} \geq 2$ then $p_{2}\left(p_{2}-1\right)$ has at least 3 prime factors and divides $\phi(n)$. So $n_{2}=1$ if $p_{2} \geq 5$. If $p_{2} \geq 5$ then $2^{n_{1}-1}\left(p_{2}-1\right)$ divides $\phi(n)$, and so there are at least $n_{1}+1$ factors. So if $r=2$ and $p_{2} \geq 5$ we have $n_{1}=n_{2}=1$. If $p_{1}=2$ and $p_{2}=3$ then $2^{n_{1}-1} 3^{n_{2}-1}(3-1)$ has $n_{1}+n_{2}-1$ prime factors, so we have $n_{1}+n_{2} \leq 3$ and at most one of n_{1} and n_{2} can be 2 .
(iii) Suppose that $r=1$. Then $p_{1}^{n_{1}-1}\left(p_{1}-1\right)$ has at least $n_{1}+1$ prime factors if $p_{1} \geq 5$, at least n_{1} prime factors if $p_{1}=3$ and at least $n_{1}-1$ if $p_{1}=2$. So we have $n_{1}=1$ if $p_{1}=5, n_{1} \leq 2$ if $p_{1}=3$ and $n_{1} \leq 3$ if $p_{1}=2$.

Hence if $\phi(n)$ has at most two factors then the possible values of $n \geq 2$ are

$$
2,4,8,3,6,12,9,18, p, 2 p
$$

where p is a prime ≥ 5.
This was a long question and a number of people who submitted homework left it out. But those who did tackle it did pretty well.
9. We have

$$
\phi(2)=1, \pi(4)=\phi(3)=\phi(6)=2, \phi(8)=4=\phi(12), \phi(9)=\phi(18)=6, \phi(p)=\phi(2 p)=p-1 .
$$

So if $\phi(n)=6$ we have $n=9$ or $n=18$ or $n=p$ or $2 p$ for a prime p such that $p-1=6$. The unique such prime is $6+1=7$. So the n such that $\phi(n)=6$ are

$$
9,18,7,14
$$

If n is such that $\phi(n)=14$ then $n=p$ or $2 p$ for a prime p such that $p-1=14$. But $14+1=15=3 \times 5$ is not prime and so there is no such p and no such n.

