MATH342 Feedback and Solutions 4

1. If $a=2 k$ for $k \in \mathbb{Z}$ then $a^{2}=4 k^{2}=0 \bmod 4$. If $a=2 k+1$ then $a^{2}=4 k^{2}+4 k+1=4 k(k+1)+1$. Either k or $k+1$ is even. So $k(k+1)=2 m$ for $m \in \mathbb{Z}-$ actually for $m \in \mathbb{N}$ because k and $k+1$ are either both ≥ 0 or both ≤ 0. So $a^{2}=8 m+1$ and $a^{2}=1 \bmod 8$.

In this question and others: note that if $x \equiv 0 \bmod 4$ then it does not follow that $x \equiv 0 \bmod 8$. The first statement says that $4 \bmod x$. The second statement says that $8 \mid x$. Of course if $x \equiv 4 \bmod 4$ we can say that $x \equiv 0 \bmod 8$ or $x \equiv 4 \bmod 8$. There are many ways of doing this question. Quite a few people considered the different choices for an odd number mod 8 . These can be written as $\pm 1 \bmod 8$ and $\pm 3 \bmod 8$, for which the squares are $1 \bmod 8$ or $9 \equiv 1 \bmod 8$.
2.
a) Suppose that $n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$.

If all of a_{1}, a_{2} and a_{3} are even then $a_{i}^{2}=0 \bmod 4$ for all i and $n=0 \bmod 4$, that is, $n=0$ or $4 \bmod 8$.
If exactly one of the a_{i} is odd then we can assume that a_{1} is odd and a_{2} and a_{3} are even. Then $a_{1}^{2}=1$ $\bmod 8=1 \bmod 4$ and $a_{2}^{2}+a_{3}^{2}=0 \bmod 4$. Hence $n=1 \bmod 4$, that is, $n=1$ or $5 \bmod 8$.
If exactly two of the a_{i} are odd, we can assume that a_{1} and a_{2} are odd and a_{3} is even. Then $a_{1}^{2}+a_{2}^{2}=2$ $\bmod 8=2 \bmod 4$ and $a_{3}^{2}=0 \bmod 4$, and $n=2 \bmod 4$, so that $n=2$ or $6 \bmod 8$.
If all the a_{i} are odd then $n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=3 \bmod 8$.
So $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$ is never equal to $7 \bmod 8$.
b) Write $b^{2}=a$. then $a=0 \bmod 4$ or $1 \bmod 8$. If $a=4 k$ for $k \in \mathbb{N}$ then

$$
b^{4}=a^{2}=16 k^{2} \equiv 0 \quad \bmod 16 .
$$

If $a=8 k+1$ for $k \in \mathbb{N}$ then

$$
b^{4}=a^{2}=64 k^{2}+16 k+1 \equiv 1 \quad \bmod 16
$$

It was expected that you would use question 1, to shorten the question. But it is natural to use the Binomial Theorem for b^{4} in the case of b odd, which some people did. In this case $b=2 m+1$ and

$$
b^{4}=16 m^{4}+32 m^{3}+24 m^{2}+8 m+1=16\left(m^{4}+2 m^{3}+m^{2}\right)+8 m(m+1)+1
$$

It is then necessary to use (as before) that $m(m+1)$ is even.
3.

$$
x^{2} \equiv x \quad \bmod p^{k} \Leftrightarrow x^{2}-x \equiv 0 \quad \bmod p^{k} \Leftrightarrow p^{k} \mid x(x-1)
$$

So if $x^{2} \equiv x \bmod p^{k}$, since p is prime, either $p \mid x$ or $p \mid x-1$. Clearly it cannot divide both. So if p divides x, none of the prime factors of $x-1$ is p, and by unique factorisation of $x(x-1)$, it must be the case that $p^{k} \mid x$. Similarly if $p \mid x-1$ then $p^{k} \mid x-1$. So either $x \equiv 0 \bmod p^{k}$ or $x-1 \equiv 0 \bmod p^{k}$, that is, $x \equiv 1 \bmod p^{k}$.

This works because if $p^{k} \mid x$ (or $p^{k} \mid x-1$) then $p \mid x($ or $p \mid(x-1)$). Then, as pointed out above, p cannot divide both.
4. The system of equations

$$
\left\{\begin{array}{l}
x \equiv 13 \quad \bmod 11 \\
3 x \equiv 12 \quad \bmod 10 \\
2 x \equiv 10 \quad \bmod 6
\end{array}\right.
$$

is equivalent to

$$
\begin{cases}x \equiv 2 & \bmod 11 \\ x \equiv 4 & \bmod 10 \\ x \equiv 2 & \bmod 3\end{cases}
$$

The first equation follows because $13 \equiv 2 \bmod 11$. The second equation is derived by multiplying by 7 , because $7 \times 3 \equiv 1 \bmod 10$ and $7 \times 12 \equiv 7 \times 2 \equiv 4 \bmod 10$. The third equation is obtained by dividing by 2 and then using $5 \equiv 2 \bmod 3$.

Write

$$
m_{1}=11, m_{2}=10, m_{3}=3
$$

Then any two of m_{1}, m_{2} and m_{3} are coprime, so we know there is a solution. We have

$$
\begin{gathered}
x \equiv 2 \times\left(30^{-1} \bmod 11\right) \times 30+4 \times\left(33^{-1} \bmod 10\right) \times 33+2 \times\left(110^{-1} \bmod 3\right) \times 110 \bmod 330 \\
\equiv 2 \times\left(8^{-1} \bmod 11\right) \times 30+4 \times\left(3^{-1} \bmod 10\right) \times 33+2 \times\left(2^{-1} \bmod 3\right) \times 110 \\
\equiv 2 \times 7 \times 30+4 \times 7 \times 33+2 \times 2 \times 110 \bmod 330
\end{gathered}
$$

$$
\equiv 3 \times 30-2 \times 33+110 \equiv 134 \bmod 330
$$

5. Multiplying the second equation by 5 gives $x \equiv 20 \equiv 6 \bmod 14$, which implies $x \equiv 6 \bmod 7$. The first equation $x \equiv 2 \bmod 7$ is inconsistent with this. So the two equations together have no solution.

The solution is not clear unless the second equation is put in the form $x \equiv$ amod 14 . this step was often missed out.
6. We have $G_{3}=\{1 \bmod 3,2 \bmod 3\}$ and $G_{4}=\{1 \bmod 4,3 \bmod 4\}$ since 1 and 3 are the two integers ≥ 1 and ≤ 3 which are coprime to 4 . Similarly we have

$$
G_{12}=\{1 \bmod 12,5 \bmod 12,7 \bmod 12,11 \bmod 12\}
$$

since $1,5,7$ and 11 are the four integers ≥ 1 and ≤ 11 which are coprime to 12 . The isomorphism ψ between G_{12} and $G_{3} \times G_{4}$ is given by

$$
\psi(a \bmod 12)=(a \bmod 3, a \bmod 4)
$$

Writing a for $a \bmod 12$ and (b, c) for $(b \bmod 3, c \bmod 4)$, we have

$$
\psi(1)=(1,1), \quad \psi(5)=(2,1), \quad \psi(7)=(1,3), \quad \psi(11)=(2,3)
$$

There seemed to be some confusion about this isomorphism ψ, because some people failed to write it down.
Now we check the multiplications. We write a for $a \bmod 12$ in the first table and (a, b) for $(a \bmod 3, b \bmod 4)$ in the second table

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

	$(1,1)$	$(2,1)$	$(1,3)$	$(2,3)$
$(1,1)$	$(1,1)$	$(2,1)$	$(1,3)$	$(2,3)$
$(2,1)$	$(2,1)$	$(1,1)$	$(2,3)$	$(1,3)$
$(1,3)$	$(1,3)$	$(2,3)$	$(1,1)$	$(2,1)$
$(2,3)$	$(2,3)$	$(1,3)$	$(2,1)$	$(1,1)$

Entries in the two multiplication tables do correspond, as required.

