MATH342 Feedback and Solutions 4

1. If a = 2k for $k \in \mathbb{Z}$ then $a^2 = 4k^2 = 0 \mod 4$. If a = 2k + 1 then $a^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1$. Either k or k+1 is even. So k(k+1) = 2m for $m \in \mathbb{Z}$ – actually for $m \in \mathbb{N}$ because k and k+1 are either both ≥ 0 or both ≤ 0 . So $a^2 = 8m + 1$ and $a^2 = 1 \mod 8$.

In this question and others: note that if $x \equiv 0 \mod 4$ then it does not follow that $x \equiv 0 \mod 8$. The first statement says that $4 \mod x$. The second statement says that $8 \mid x$. Of course if $x \equiv 4 \mod 4$ we can say that $x \equiv 0 \mod 8$ or $x \equiv 4 \mod 8$. There are many ways of doing this question. Quite a few people considered the different choices for an odd number mod 8. These can be written as $\pm 1 \mod 8$ and $\pm 3 \mod 8$, for which the squares are $1 \mod 8$ or $9 \equiv 1 \mod 8$.

a) Suppose that $n = a_1^2 + a_2^2 + a_3^2$.

If all of a_1 , a_2 and a_3 are even then $a_i^2 = 0 \mod 4$ for all i and $n = 0 \mod 4$, that is, n = 0 or $4 \mod 8$. If exactly one of the a_i is odd then we can assume that a_1 is odd and a_2 and a_3 are even. Then $a_1^2 = 1 \mod 8 = 1 \mod 4$ and $a_2^2 + a_3^2 = 0 \mod 4$. Hence $n = 1 \mod 4$, that is, n = 1 or $5 \mod 8$. If exactly two of the a_i are odd, we can assume that a_1 and a_2 are odd and a_3 is even. Then $a_1^2 + a_2^2 = 2 \mod 8 = 2 \mod 4$ and $a_3^2 = 0 \mod 4$, and $n = 2 \mod 4$, so that n = 2 or $6 \mod 8$. If all the a_i are odd then $n = a_1^2 + a_2^2 + a_3^2 = 3 \mod 8$. So $a_1^2 + a_2^2 + a_3^2$ is never equal to $7 \mod 8$.

b) Write $b^2 = a$. then $a = 0 \mod 4$ or $1 \mod 8$. If a = 4k for $k \in \mathbb{N}$ then

$$b^4 = a^2 = 16k^2 \equiv 0 \mod 16$$

If a = 8k + 1 for $k \in \mathbb{N}$ then

$$b^4 = a^2 = 64k^2 + 16k + 1 \equiv 1 \mod 16.$$

It was expected that you would use question 1, to shorten the question. But it is natural to use the Binomial Theorem for b^4 in the case of b odd, which some people did. In this case b = 2m + 1 and

$$b^{4} = 16m^{4} + 32m^{3} + 24m^{2} + 8m + 1 = 16(m^{4} + 2m^{3} + m^{2}) + 8m(m+1) + 1$$

It is then necessary to use (as before) that m(m+1) is even.

3.

$$x^2 \equiv x \mod p^k \Leftrightarrow x^2 - x \equiv 0 \mod p^k \Leftrightarrow p^k \mid x(x-1).$$

So if $x^2 \equiv x \mod p^k$, since p is prime, either $p \mid x$ or $p \mid x - 1$. Clearly it cannot divide both. So if p divides x, none of the prime factors of x - 1 is p, and by unique factorisation of x(x - 1), it must be the case that $p^k \mid x$. Similarly if $p \mid x - 1$ then $p^k \mid x - 1$. So either $x \equiv 0 \mod p^k$ or $x - 1 \equiv 0 \mod p^k$, that is, $x \equiv 1 \mod p^k$.

This works because if $p^k \mid x \text{ (or } p^k \mid x-1)$ then $p \mid x \text{ (or } p \mid (x-1))$. Then, as pointed out above, p cannot divide both.

4. The system of equations

x

$\begin{cases} x \equiv 13 & 13 \\ 3x \equiv 12 \\ 2x \equiv 10 \end{cases}$	mod 11 mod 10 mod 6
$\int x \equiv 2$	mod 11
$\begin{cases} x \equiv 4 \end{cases}$	$\mod 10$
$x \equiv 2$	$\mod 3$
	$\begin{cases} x \equiv 13 & 13 \\ 3x \equiv 12 \\ 2x \equiv 10 \end{cases}$ $\begin{cases} x \equiv 2 & 13 \\ x \equiv 4 & 13 \\ x \equiv 2 & 13 \end{cases}$

The first equation follows because $13 \equiv 2 \mod 11$. The second equation is derived by multiplying by 7, because $7 \times 3 \equiv 1 \mod 10$ and $7 \times 12 \equiv 7 \times 2 \equiv 4 \mod 10$. The third equation is obtained by dividing by 2 and then using $5 \equiv 2 \mod 3$.

Write

$$m_1 = 11, m_2 = 10, m_3 = 3$$

Then any two of m_1 , m_2 and m_3 are coprime, so we know there is a solution. We have

$$= 2 \times (30^{-1} \mod 11) \times 30 + 4 \times (33^{-1} \mod 10) \times 33 + 2 \times (110^{-1} \mod 3) \times 110 \mod 330$$

= 2 × (8⁻¹ mod 11) × 30 + 4 × (3⁻¹ mod 10) × 33 + 2 × (2⁻¹ mod 3) × 110
= 2 × 7 × 30 + 4 × 7 × 33 + 2 × 2 × 110 mod 330

 $\equiv 3 \times 30 - 2 \times 33 + 110 \equiv 134 \text{mod } 330.$

5. Multiplying the second equation by 5 gives $x \equiv 20 \equiv 6 \mod 14$, which implies $x \equiv 6 \mod 7$. The first equation $x \equiv 2 \mod 7$ is inconsistent with this. So the two equations together have no solution.

The solution is not clear unless the second equation is put in the form $x \equiv \text{amod } 14$. this step was often missed out.

6. We have $G_3 = \{1 \mod 3, 2 \mod 3\}$ and $G_4 = \{1 \mod 4, 3 \mod 4\}$ since 1 and 3 are the two integers ≥ 1 and ≤ 3 which are coprime to 4. Similarly we have

$$G_{12} = \{1 \mod{12}, 5 \mod{12}, 7 \mod{12}, 11 \mod{12}\}$$

since 1, 5, 7 and 11 are the four integers ≥ 1 and ≤ 11 which are coprime to 12. The isomorphism ψ between G_{12} and $G_3 \times G_4$ is given by

$$\psi(a \mod 12) = (a \mod 3, a \mod 4).$$

Writing a for $a \mod 12$ and (b, c) for $(b \mod 3, c \mod 4)$, we have

 $\psi(1) = (1,1), \ \psi(5) = (2,1), \ \psi(7) = (1,3), \ \psi(11) = (2,3).$

There seemed to be some confusion about this isomorphism ψ , because some people failed to write it down. Now we check the multiplications. We write a for amod 12 in the first table and (a, b) for $(a \mod 3, b \mod 4)$ in the second table

	1	5	7	11		
1	1	5	7	11		
5	5	1	11	7		
7	7	11	1	5		
11	11	7	5	1		
	•					
		(1,1)	(2, 1)		(1, 3)	(2, 3)
(1,1)		(1,1)	(2,1)		(1,3)	(2,3)
(2, 1)		(2,1)	(1, 1)		(2, 3)	(1,3)
(1, 3)		(1,3)	(2,3)		(1, 1)	(2,1)
(2, 3)		(2,3)	(1,3)		(2, 1)	(1,1)

Entries in the two multiplication tables do correspond, as required.