MATH342 Feedback and Solutions 3

1. If n is an even integer then $n \equiv 0 \bmod 2$ and $n^{k} \equiv 0 \bmod 2$ that is, n^{2} is even. If n is odd then $n \equiv 1 \bmod 2$ and $n^{k} \equiv 1^{k} \equiv 1 \bmod 2$, that is, n^{2} is odd.
2. If $n_{i} \in \mathbb{Z}$ is odd for $1 \leq i \leq k$ then $n_{i} \equiv 1 \bmod 2$ for $1 \leq i \leq k$ and hence $\sum_{i=1}^{k} n_{i} \equiv k \bmod 2$, so that $\sum_{i=1}^{k} n_{i}$ is even if k is odd and odd if k is even.
Alternatively, we can write $n_{i}=2 m_{i}+1$ for some $m_{i} \in \mathbb{Z}$. Then

$$
\sum_{i=1}^{k} n_{i}=\sum_{i=1}^{k}\left(2 m_{i}+1\right)=2\left(\sum_{i=1}^{k} m_{i}\right)+k
$$

which is even if k is even and odd if k is odd.
3. We have

$$
\frac{p^{n}-1}{p-1}=\sum_{k=0}^{n-1} p^{k}
$$

which is the sum of n odd numbers - which is even if and only if n is even.
Now suppose that $n=2 k$ is even. Then $p^{2}-1=(p-1)(p+1)$ and

$$
\frac{p^{2 k}-1}{p-1}=(p+1) \sum_{i=0}^{k-1} p^{2 i}
$$

The number $p+1$ is even, because p is odd. So $\frac{p^{2 k}-1}{p-1} \equiv 0 \bmod 4$ if and only if either $p+1$ is divisible by 4 or $\sum_{i=0}^{k-1} p^{2 i}$ is even. But $p+1$ is divisible by 4 if and only if $p \equiv-1 \bmod 4$, and the $\operatorname{sum} \sum_{i=0}^{k-1} p^{2 i}$ is a sum of k odd numbers, which is even if and only if k is even, that is, if and only if $n+1$ is divisible by 4 , that is, if and only if $n \equiv-1 \bmod 4$.

Some care is needed to make a complete "if and only if" argument in this case.
If $(p, n)=(3,1)$ then $3-1=2$ and $3^{2}-1=8$ and $8 / 2=4$ is divisible by 4 , which is correct as $n+1=2$ is even and $3 \equiv-1 \bmod 4$.
If $(p, n)=(3,2)$ then $p^{3}-1=26$ and $26 / 2=13$ is odd, which is correct as $n+1=3$ is odd.
If $(p, n)=(5,1)$ then $5-1=4$ and $5^{2}-1=24$ and $24 / 4=6$ is even (divisible by 2$)$ but not divisible by 4 , which is correct as $n \equiv 1 \bmod 4$ and $p=5 \equiv 1 \bmod 4$.
If $(p, n)=(5,3)$ then $5^{4}-1=624$ and $624 / 4=156=4 \times 39$ is divisible by 4 , which is correct as $n=3 \equiv-1 \bmod 4$.

This question can be used to deduce that if $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$ is an odd perfect number and the p_{i} are distinct primes, then n_{i} is odd for exactly one i, and, for this $i, p_{i} \equiv 1 \bmod 4$ and $n_{i} \equiv 1 \bmod 4$. This is because exactly one of the numbers $\frac{p_{i}^{n_{i}+1}-1}{p_{i}-1}$ can be even, and none of them can be divisible by 4 . These facts are used in question 4.
4. If $k>3$ we have

$$
\prod_{i=4}^{k}\left(1-\frac{1}{p_{i}}\right)<\prod_{i=4}^{k}\left(1-\frac{1}{p_{i}^{n_{i}+1}}\right)
$$

We also have

$$
2 \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)=2 \prod_{i=1}^{3}\left(1-\frac{1}{p_{i}}\right) \times \prod_{i=4}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

and

$$
\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}^{n_{i}+1}}\right)=\prod_{i=1}^{3}\left(1-\frac{1}{p_{i}^{n_{i}+1}}\right) \times \prod_{i=4}^{k}\left(1-\frac{1}{p_{i}^{n_{i}+1}}\right)
$$

So we have split each product into two parts and we want to compare the two products by comparing the parts. We have compared the products over terms $4 \leq k \leq n$ if $n \geq 4$. Now we need to compare the parts with $1 \leq k \leq 3$.

$$
2\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)=\frac{16}{15} \times \frac{6}{7}=\frac{32}{35}=1-\frac{3}{35}<1-\frac{1}{12}
$$

and since $n_{1} \geq 2 n_{2} \geq 1$ and $n_{3} \geq 2$,

$$
\begin{gathered}
\left(1-\frac{1}{3^{n_{1}+1}}\right)\left(1-\frac{1}{5^{n_{2}+1}}\right)\left(1-\frac{1}{7^{n_{3}+1}}\right) \\
\geq \frac{26}{27} \times \frac{24}{25} \times \frac{342}{343}=\frac{208}{225} \times \frac{342}{343}>1-\frac{17}{225}-\frac{1}{343}>1-\frac{1}{13}-\frac{1}{343}
\end{gathered}
$$

Since $\frac{1}{12}-\frac{1}{13}=\frac{1}{156}$, we have

$$
2 \prod_{i=1}^{3}\left(1-\frac{1}{p_{i}}\right)<\prod_{i=1}^{3}\left(1-\frac{1}{p_{i}^{n_{i}+1}}\right)
$$

and hence the two products from 1 to k cannot be equal, and N does not exist.
5. Write

$$
\binom{p}{k}=\frac{\prod_{j=0}^{k-1}(p-j)}{k!}
$$

We know that the binomial coefficients are integers and therefore

$$
k!\mid \prod_{j=0}^{k-1}(p-j)
$$

and

$$
\prod_{j=0}^{k-1}(p-j)=q \times k!
$$

Since $k>0, p \mid \prod_{j=0}^{k-1}(p-j)$ but since $k<p, p$ does not divide k !. So $p \mid q$, that is

$$
p \left\lvert\,\binom{ p}{k}\right.
$$

If you use the expression

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!}
$$

then you also need to note that $\operatorname{gcd}(p,(p-k!)=1$ for $1 \leq k \leq p-1$.
To show that is necessary for p to be prime

$$
\binom{4}{2}=6
$$

is not divisible by 4
6.
a) Since $375=75 \times 5=15 \times 5^{2}=3 \times 5^{3}$, there are 75 strictly positive integers ≤ 376 which are divisible by 5 , and 15 which are divisible by 5^{2} and 3 which are divisible by 5^{3}. So the maximum power of 5 dividing 376 ! is $75+15+3=93$. The maximum power of 2 dividing 376 is more than 188 , because there
are 188 strictly positive even integers which are ≤ 376. So the maximum power of 10 dividing 376 ! is 93 and there are 93 zeros at the end of the number 376 !.
b) We have

$$
\binom{376}{128}=\frac{\prod_{k=249}^{376} k}{128!}
$$

26 of the integers between 249 and 376 inclusive are divisible by 5 , and 6 disible by 5^{2} and 2 divisible by 5^{3}. Meanwhile there are 25 strictly positive integers ≤ 128 which are divisible by 5 , and 5 by 5^{2}, and 1 by 5^{3}. So the maximum power of 5 dividing $\binom{376}{128}$ is 3 . As for the maximum power of 2 , there are 64 even integers between 249 and 376 inclusive, and 32 which are divisible by $4=2^{2}$ and 16 which are divisible by $8=2^{3}$. Then 8 of these are divisible by 2^{4}, and 4 divisible by 2^{5}, and 2 divisible by 2^{6} and one number, 256 which is divisible by 2^{7}. But $256=2^{8}$ is also divisible by 2^{8}. So the power of 2 which divides $\prod_{k=249}^{376} k$ is

$$
64+32+16+8+4+2+1+1=128
$$

As for 128 !, there are 2^{7-k} strictly positive integers ≤ 128 which are divisible by 2^{k}, for each $1 \leq k \leq 7$. So the maximum power of 2 dividing 128 is

$$
\sum_{k=0}^{6} 2^{k}=127
$$

and the maximum power of 2 dividing $\binom{376}{128}$ is $128-127=1$. So the maximum power of 10 dividing $\binom{376}{128}$ is 1 and there is just one 0 at the end of this number.

I had some answers to this question which worked entirely with factorials, using $\binom{376}{128}=\frac{376!}{248!\times 128!}$. This showed initiative, because I had not suggested it myself. But most of the answers that I saw using this failed to separate out powers of 2 and 5 properly, and so got the calculation wrong. Here is how to do it. We will use m_{1}, n_{1} and k_{1} for the maximumpowers of 2 dividing 376 !, 128! and 248 ! respectively, and m_{2}, n_{2} and k_{2} for the maximum powers of 5 dividing 376!, 128! and 248! respectively. Then

$$
\begin{gathered}
m_{1}=\left\lfloor\frac{376}{2}\right\rfloor+\left\lfloor\frac{376}{4}\right\rfloor+\left\lfloor\frac{376}{8}\right\rfloor+\left\lfloor\frac{376}{16}\right\rfloor+\left\lfloor\frac{376}{32}\right\rfloor+\left\lfloor\frac{376}{64}\right\rfloor+\left\lfloor\frac{376}{128}\right\rfloor+\left\lfloor\frac{376}{256}\right\rfloor \\
=188+94+47+23+11+5+2+1=371 \\
n_{1}=\left\lfloor\frac{128}{2}\right\rfloor+\left\lfloor\frac{128}{4}\right\rfloor+\left\lfloor\frac{128}{8}\right\rfloor+\left\lfloor\frac{128}{16}\right\rfloor+\left\lfloor\frac{128}{32}\right\rfloor+\left\lfloor\frac{128}{64}\right\rfloor+\left\lfloor\frac{128}{128}\right\rfloor \\
\quad=64+32+16+8+4+2+1=127, \\
k_{1}==\left\lfloor\frac{248}{2}\right\rfloor+\left\lfloor\frac{248}{4}\right\rfloor+\left\lfloor\frac{248}{8}\right\rfloor+\left\lfloor\frac{248}{16}\right\rfloor+\left\lfloor\frac{248}{32}\right\rfloor+\left\lfloor\frac{248}{64}\right\rfloor+\left\lfloor\frac{248}{128}\right\rfloor \\
=124+62+31+15+7+3+1=243
\end{gathered}
$$

So the maximum power of 2 dividing $\binom{376}{128}$ is $m_{1}-\left(n_{1}+k_{1}\right)=371-127-243=1$.
For powers of 5: we have seen already that $m_{2}=93$. Similarly we have

$$
\begin{aligned}
& n_{2}=\left\lfloor\frac{128}{5}\right\rfloor+\left\lfloor\frac{128}{25}\right\rfloor+\left\lfloor\frac{128}{125}\right\rfloor=25+5+1=31, \\
& k_{2}=\left\lfloor\frac{248}{5}\right\rfloor+\left\lfloor\frac{248}{25}\right\rfloor+\left\lfloor\frac{248}{125}\right\rfloor=49+9+1=59 .
\end{aligned}
$$

So the maximum power of 5 dividing $\binom{376}{128}$ is then $m_{2}-\left(n_{2}+k_{2}\right)=93-31-59=3$. Since $1<3$, the maximum power of 5 dividing $\binom{376}{128}$ is then 1 , that is, there is just one zero at the end of $\binom{376}{128}$.

