MATH342 Feedback and Solutions 3

1. If n is an even integer then $n \equiv 0 \mod 2$ and $n^k \equiv 0 \mod 2$ that is, n^2 is even. If n is odd then $n \equiv 1 \mod 2$ and $n^k \equiv 1^k \equiv 1 \mod 2$, that is, n^2 is odd.

2. If $n_i \in \mathbb{Z}$ is odd for $1 \le i \le k$ then $n_i \equiv 1 \mod 2$ for $1 \le i \le k$ and hence $\sum_{i=1}^k n_i \equiv k \mod 2$, so that $\sum_{i=1}^k n_i$ is even if k is odd and odd if k is even.

Alternatively, we can write $n_i = 2m_i + 1$ for some $m_i \in \mathbb{Z}$. Then

$$\sum_{i=1}^{k} n_i = \sum_{i=1}^{k} (2m_i + 1) = 2\left(\sum_{i=1}^{k} m_i\right) + k$$

which is even if k is even and odd if k is odd.

3. We have

$$\frac{p^n - 1}{p - 1} = \sum_{k=0}^{n-1} p^k$$

which is the sum of n odd numbers – which is even if and only if n is even.

Now suppose that n = 2k is even. Then $p^2 - 1 = (p - 1)(p + 1)$ and

$$\frac{p^{2k} - 1}{p - 1} = (p + 1) \sum_{i=0}^{k-1} p^{2i}.$$

The number p+1 is even, because p is odd. So $\frac{p^{2k}-1}{p-1} \equiv 0 \mod 4$ if and only if either p+1 is divisible

by 4 or $\sum_{i=0}^{k-1} p^{2i}$ is even. But p+1 is divisible by 4 if and only if $p \equiv -1 \mod 4$, and the sum $\sum_{i=0}^{k-1} p^{2i}$ is a sum of k odd numbers, which is even if and only if k is even, that is, if and only if n+1 is divisible by

4, that is, if and only if $n \equiv -1 \mod 4$.

Some care is needed to make a complete "if and only if" argument in this case.

If (p,n) = (3,1) then 3-1 = 2 and $3^2 - 1 = 8$ and 8/2 = 4 is divisible by 4, which is correct as n+1=2 is even and $3 \equiv -1 \mod 4$.

If (p, n) = (3, 2) then $p^3 - 1 = 26$ and 26/2 = 13 is odd, which is correct as n + 1 = 3 is odd.

If (p, n) = (5, 1) then 5 - 1 = 4 and $5^2 - 1 = 24$ and 24/4 = 6 is even (divisible by 2) but not divisible by 4, which is correct as $n \equiv 1 \mod 4$ and $p = 5 \equiv 1 \mod 4$.

If (p, n) = (5, 3) then $5^4 - 1 = 624$ and $624/4 = 156 = 4 \times 39$ is divisible by 4, which is correct as $n = 3 \equiv -1 \mod 4$.

This question can be used to deduce that if $N = \prod_{i=1}^{k} p_i^{n_i}$ is an odd perfect number and the p_i are distinct primes, then n_i is odd for exactly one i, and, for this i, $p_i \equiv 1 \mod 4$ and $n_i \equiv 1 \mod 4$. This is because exactly one of the numbers $\frac{p_i^{n_i+1}-1}{p_i-1}$ can be even, and none of them can be divisible by 4. These facts are used in question 4. **4.** If k > 3 we have

$$\prod_{i=4}^{k} \left(1 - \frac{1}{p_i}\right) < \prod_{i=4}^{k} \left(1 - \frac{1}{p_i^{n_i+1}}\right)$$

We also have

$$2\prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right) = 2\prod_{i=1}^{3} \left(1 - \frac{1}{p_i}\right) \times \prod_{i=4}^{k} \left(1 - \frac{1}{p_i}\right),$$

and

$$\prod_{i=1}^{k} \left(1 - \frac{1}{p_i^{n_i+1}} \right) = \prod_{i=1}^{3} \left(1 - \frac{1}{p_i^{n_i+1}} \right) \times \prod_{i=4}^{k} \left(1 - \frac{1}{p_i^{n_i+1}} \right).$$

So we have split each product into two parts and we want to compare the two products by comparing the parts. We have compared the products over terms $4 \le k \le n$ if $n \ge 4$. Now we need to compare the parts with $1 \le k \le 3$.

$$2\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) = \frac{16}{15} \times \frac{6}{7} = \frac{32}{35} = 1-\frac{3}{35} < 1-\frac{1}{12}.$$

and since $n_1 \ge 2$ $n_2 \ge 1$ and $n_3 \ge 2$,

$$\left(1 - \frac{1}{3^{n_1+1}}\right) \left(1 - \frac{1}{5^{n_2+1}}\right) \left(1 - \frac{1}{7^{n_3+1}}\right)$$
$$\geq \frac{26}{27} \times \frac{24}{25} \times \frac{342}{343} = \frac{208}{225} \times \frac{342}{343} > 1 - \frac{17}{225} - \frac{1}{343} > 1 - \frac{1}{13} - \frac{1}{343}$$

Since $\frac{1}{12} - \frac{1}{13} = \frac{1}{156}$, we have

$$2\prod_{i=1}^{3} \left(1 - \frac{1}{p_i}\right) < \prod_{i=1}^{3} \left(1 - \frac{1}{p_i^{n_i+1}}\right)$$

and hence the two products from 1 to k cannot be equal, and N does not exist. 5. Write

$$\binom{p}{k} = \frac{\prod_{j=0}^{k-1}(p-j)}{k!}.$$

We know that the binomial coefficients are integers and therefore

$$k! \mid \prod_{j=0}^{k-1} (p-j)$$

and

$$\prod_{j=0}^{k-1} (p-j) = q \times k!$$

Since k > 0, $p \mid \prod_{j=0}^{k-1} (p-j)$ but since k < p, p does not divide k!. So $p \mid q$, that is

$$p \mid \begin{pmatrix} p \\ k \end{pmatrix}$$

If you use the expression

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

then you also need to note that $gcd(p, (p-k!) = 1 \text{ for } 1 \le k \le p-1.$

To show that is necessary for p to be prime

$$\binom{4}{2} = 6$$

is not divisible by 4

6.

a) Since $375 = 75 \times 5 = 15 \times 5^2 = 3 \times 5^3$, there are 75 strictly positive integers ≤ 376 which are divisible by 5, and 15 which are divisible by 5^2 and 3 which are divisible by 5^3 . So the maximum power of 5 dividing 376! is 75 + 15 + 3 = 93. The maximum power of 2 dividing 376 is more than 188, because there

are 188 strictly positive even integers which are ≤ 376 . So the maximum power of 10 dividing 376! is 93 and there are 93 zeros at the end of the number 376!. b) We have

$$\binom{376}{128} = \frac{\prod_{k=249}^{376} k}{128!}$$

26 of the integers between 249 and 376 inclusive are divisible by 5, and 6 disible by 5^2 and 2 divisible by 5^3 . Meanwhile there are 25 strictly positive integers ≤ 128 which are divisible by 5, and 5 by 5^2 , and 1 by 5^3 . So the maximum power of 5 dividing $\binom{376}{128}$ is 3. As for the maximum power of 2, there are 64 even integers between 249 and 376 inclusive, and 32 which are divisible by $4 = 2^2$ and 16 which are divisible by $8 = 2^3$. Then 8 of these are divisible by 2^4 , and 4 divisible by 2^5 , and 2 divisible by 2^6 and one number, 256 which is divisible by 2^7 . But $256 = 2^8$ is also divisible by 2^8 . So the power of 2 which divides $\prod_{k=249}^{376} k$ is 64 + 32 + 16 + 8 + 4 + 2 + 1 + 1 = 128.

As for 128!, there are 2^{7-k} strictly positive integers ≤ 128 which are divisible by 2^k , for each $1 \leq k \leq 7$. So the maximum power of 2 dividing 128 is

$$\sum_{k=0}^{6} 2^k = 127$$

and the maximum power of 2 dividing $\binom{376}{128}$ is 128 - 127 = 1. So the maximum power of 10 dividing (276)

 $\begin{pmatrix} 376\\128 \end{pmatrix}$ is 1 and there is just one 0 at the end of this number.

I had some answers to this question which worked entirely with factorials, using $\binom{376}{128} = \frac{376!}{248! \times 128!}$. This showed initiative, because I had not suggested it myself. But most of the answers that I saw using this failed to separate out powers of 2 and 5 properly, and so got the calculation wrong. Here is how to do it. We will use m_1 , n_1 and k_1 for the maximum powers of 2 dividing 376!, 128! and 248! respectively, and m_2 , n_2 and k_2 for the maximum powers of 5 dividing 376!, 128! and 248! respectively. Then

$$m_{1} = \left\lfloor \frac{376}{2} \right\rfloor + \left\lfloor \frac{376}{4} \right\rfloor + \left\lfloor \frac{376}{8} \right\rfloor + \left\lfloor \frac{376}{16} \right\rfloor + \left\lfloor \frac{376}{32} \right\rfloor + \left\lfloor \frac{376}{64} \right\rfloor + \left\lfloor \frac{376}{128} \right\rfloor + \left\lfloor \frac{376}{256} \right\rfloor \\ = 188 + 94 + 47 + 23 + 11 + 5 + 2 + 1 = 371 \\ n_{1} = \left\lfloor \frac{128}{2} \right\rfloor + \left\lfloor \frac{128}{4} \right\rfloor + \left\lfloor \frac{128}{8} \right\rfloor + \left\lfloor \frac{128}{16} \right\rfloor + \left\lfloor \frac{128}{32} \right\rfloor + \left\lfloor \frac{128}{64} \right\rfloor + \left\lfloor \frac{128}{128} \right\rfloor \\ = 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127, \\ k_{1} = = \left\lfloor \frac{248}{2} \right\rfloor + \left\lfloor \frac{248}{4} \right\rfloor + \left\lfloor \frac{248}{8} \right\rfloor + \left\lfloor \frac{248}{16} \right\rfloor + \left\lfloor \frac{248}{32} \right\rfloor + \left\lfloor \frac{248}{64} \right\rfloor + \left\lfloor \frac{248}{128} \right\rfloor \\ = 124 + 62 + 31 + 15 + 7 + 3 + 1 = 243$$

So the maximum power of 2 dividing $\binom{376}{128}$ is $m_1 - (n_1 + k_1) = 371 - 127 - 243 = 1$. For powers of 5: we have seen already that $m_2 = 93$. Similarly we have

$$n_{2} = \left\lfloor \frac{128}{5} \right\rfloor + \left\lfloor \frac{128}{25} \right\rfloor + \left\lfloor \frac{128}{125} \right\rfloor = 25 + 5 + 1 = 31,$$

$$k_{2} = \left\lfloor \frac{248}{5} \right\rfloor + \left\lfloor \frac{248}{25} \right\rfloor + \left\lfloor \frac{248}{125} \right\rfloor = 49 + 9 + 1 = 59.$$

So the maximum power of 5 dividing $\binom{376}{128}$ is then $m_2 - (n_2 + k_2) = 93 - 31 - 59 = 3$. Since 1 < 3, the maximum power of 5 dividing $\binom{376}{128}$ is then 1, that is, there is just one zero at the end of $\binom{376}{128}$.