
MATH342 Feedback and Solutions 2

1. The prime factorisation of 1008 is
1008 = 24 × 32 × 7.

So the divisors are 2n1 × 3n2 × 7n3 where 0 ≤ n1 ≤ 4, 0 ≤ n2 ≤ 2 and 0 ≤ n3 ≤ 1. This gives 5 × 3 × 2
possibilities. For the record the numbers are

1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144, 7, 14, 28, 56, 112,

21, 42, 84, 168, 336, 63, 126, 252, 504, 1008.

Most of the answers I had wrote down all the divisors It was OK to leave the divisors in factorised form

2n1 × 3n2 × 7n3 for n1, n2 and n3 in the given ranges. I had some answers like “ a number form {1, 2, 4, 8, 16}
times a number from {1, 3, 9} times a number from {1, 7}”. I found that perfectly clear and acceptable.

2. a) 5× 3 + 7× (−2) = 1. So 5× (3n) + 7× (−2n) = n, for any n ∈ Z.
Simple algebraic notation – just letters for general numbers – is always useful. I had some answers to the

general case in words, some of which I found clear and some not. One person also found another form of the

answer which was reasonably complete, to the effect that 5 × 3 + 7 × (−2) + (7 − 5) × n = 2n + 1, giving any odd

number. It is always good to use your initiative.

b) We have

5× 2 + 7× 2 = 24, 5× 5 + 7× 0 = 25, 5× 1 + 7× 3 = 26, 5× 4 + 7× 1 = 27, 5× 0 + 7× 4 = 28.

Every integer n ≥ 24 can be written in the form m + 5k where m is an integer with 24 ≤ m ≤ 28 and
k ∈ N. So then if 5a1 +7b1 = m with a1 and b1 ∈ N we also have a1 +k ∈ N and 5(a1 +k)+7b1 = m+5k.
As invited, most solutions solved for 24 ≤ n ≤ 28. Once again, simple use of algebraic notation is useful for

explaining the general case effectively. Explanations in words alone are not always completely successful.

c) Suppose that 35 = 5a1 + 7b1 for a1 and b1 ∈ Z+. Then 1 ≤ a1 ≤ 6 and 1 ≤ b1 ≤ 4. We also have
5 × 7 = 35. So 5(7 − a1) − 7b1 = 0 and 5(7 − a1) = 7b1. Since 5 and 7 are coprime (that is, the gcd is
1), we must have 7 | 7− a1. This is impossible because 0 < 7− a1 < 7. Alternatively we can use 5 | b1,
which is also impossible, as b1 < 5.

Most people realised that the obvious way of writing 35 = 5× 7 does not give a solution with both a and b ∈ Z+,

but there is still some workk to be done to show that it is impossible to have both a ∈ Z+ and b ∈ Z+. The proof

was expected to use the fact that 5 (or 7) is prime. If a prime divides a product of integers, it must divide one or

other of these integers.

To see that 40 can be written in the required form: 40 = 5 × 1 + 7 × 5. So we can take a = 1 and
b = 5.

3.

a) x + 2 ≡ 1 mod 4⇔ x ≡ 3 mod 4. It is also correct to say x ≡ −1 mod 4.

b) 3x ≡ 2 mod 5⇔ 2× 3x ≡ 2× 2 mod 5⇔ x ≡ 4 mod 5.

c) x2 ≡ 1 mod 3 ⇔ x ≡ 1 mod 3 or x ≡ 2 mod 3. It is probably simplest to just check each of the
three possibilities x ≡ 0 mod 3, x ≡ 1 mod 3 and x ≡ 2 mod 3. Of course, if x ≡ 0 mod 3 then
x2 ≡ 0 mod 3.



d) Once again, until or unless we know more about the theory, the simplest thing is just to check for
each of the five values of x mod 5. We have:

x ≡ 0 mod 5 ⇒ x3 ≡ 0 mod 5, x ≡ 1 mod 5 ⇒ x3 ≡ 1 mod 5,

x ≡ 2 mod 5 ⇒ x3 ≡ 8 ≡ 3 mod 5,

x ≡ 3 mod 5 ⇒ x3 ≡ 27 ≡ 2 mod 5,

x ≡ 4 mod 5 ⇒ x3 ≡ 64 ≡ 4 mod 5.

So
x3 ≡ 1 mod 5 ⇔ x ≡ 1 mod 5.

It is necessary to to check each of the 5 possible values in turn – until we know more theory (which we will do,

soon).

e) To find a and b such that 183a + 257b = 1,
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So 183×(−66)+257×47 = 1. This is enough to show that 183 and 257 are coprime. Since −66 ≡ 191
mod 257, we have 183× 191 ≡ 1 mod 257. Since 183 and 257 are coprime, x ≡ 191 mod 257 is the
only solution to 183x ≡ 1 mod 257. It is also correct to write x ≡ −66 mod 257 for the solution.
This was mostly well done, although not everyone realised that the final equation 183× (−66) + 257× 47 = 1 is

equivalent to x ≡ −66 mod 257.

4. We have
gcd(6n + 1, 6n− 3) = gcd(4, 6n− 3).

Since 4 = 2× 2 and 6n− 3 is odd and not divisible by 2 we have gcd(4, 6n− 3) = 1. For the second part,

gcd(5n + 3, 3n + 2) = gcd(2n + 1, 3n + 2) = gcd(2n + 1, n + 1) = gcd(n, n + 1) = gcd(n, 1) = 1

Although the question did not say so, this is really just an application of the Euclidean algorithm: one application

in the first part of the question and up to four applications in the second part (as I have written it).The point of the

Euclidean algorithm is always to reduce the larger number of the pair to a number which is smaller than the other

number in the pair. With the first part of the question is best to stop after just one application, because we know

what the divisors of 4 are, and only 1 also divides any odd number. In principle we could continue the Euclidean

algorithm in this part of the question but it is a bit awkward, and not necessary.

5. We prove by induction on n that if p |
∏n

j=1 bjthen p | bj for some 1 ≤ j ≤ i. We are allowed to
assume it is true for n = 2. Now let n > 2 and assume inductively that it is true for n − 1 replacing n.
Write
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Since p is prime, gcd(p, bn) = 1 or p | bn. If gcd(p, bn) = 1 then by the key property we have p |
∏n−1

j=1 bj .
So then by the inductive hypothesis we have p | bj for some 1 ≤ j ≤ n− 1. So in all cases p | bi for some
1 ≤ i ≤ n.

This is an induction exercise, with base case n = 2. This is a step in the proof of the Fundamental Theorem of

Arithmetic.


