MATH342 Feedback and Solutions 11

1.

a) By quadratic reciprocity, we have

$$
\left(\frac{-7}{p}\right)=(-1)^{-4(p-1) / 2}\left(\frac{p}{-7}\right)=\left(\frac{p}{-7}\right)
$$

But $\left(\frac{p}{-7}\right)$ is 1 if and only if p is a square $\bmod -7$, that is, a square $\bmod 7$, that is, $p=1,2$ or $4 \bmod$ 7.

Quadratic reciprocity works for negative integers as well as positive ones. Of course, it is acceptable to write $-7=7 \times(-1)$ and consider $\left(\frac{7}{p}\right)$ and $\left(\frac{-1}{p}\right)$ separately, but it takes longer.
b) If $p>7$ is any integer (not necessarily prime) and $p=a^{2}+7 b^{2}$ for integers a and b then $p \equiv a^{2}$ $\bmod 7$, and hence p is congruent to 1,2 or $4 \bmod 7$. (this does not use part a).
c) From part a) we see that if p is congruent to 1,2 or $4 \bmod 7$, then there is an integer c such that $-7 \equiv c^{2} \bmod p$, that is, $c^{2}+7 \equiv 0 \bmod p$, that is, $c^{2}+7$ is divisible by p.
2. The odd primes less than 100 which are congruent to 1,2 or $4 \bmod 7$ are:
$11=2^{2}+7 \times 1^{2}, \quad 23=4^{2}+7 \times 1^{2}, \quad 29=1^{2}+7 \times 2^{2}, \quad 37=3^{2}+7 \times 2^{2}, \quad 43=6^{2}+7 \times 1^{2}, \quad 53=5^{2}+7 \times 2^{2}$,

$$
67=2^{2}+7 \times 3^{2}, \quad 71=8^{2}+7 \times 1^{2}, \quad 79=4^{2}+7 \times 3^{2}
$$

3. If a and b are both odd integers, write $a^{2}=8 m+1$ and $b^{2}=8 n+1$. Then $a^{2}+b^{2}=8(m+7 n)+8$. So $(a / 2)^{2}+(b / 2)^{2}=2(m+7 n)+2$ is even, that is $|(a / 2)+(b / 2) \sqrt{-7}|^{2}$ is an even integer. Any element of $\mathcal{O}[\sqrt{-7}]$ is either of this form, or is of the form $c+d \sqrt{-7}$ for integers c and d. It is obvious that $|c+d \sqrt{-7}|^{2}=c^{2}+7 d^{2}$ is an integer. So $|z|^{2}$ is an integer for all $z \in \mathcal{O}[\sqrt{-7}]$.
4. Suppose that $z=a+b \sqrt{-7}=a+b \sqrt{7} i$ divides the integer m in $\mathcal{O}[\sqrt{-7}]$. Then $m=z w$ for some $w \in \mathcal{O}[\sqrt{-7}]$. Taking complex conjugation, $m=\bar{m}=\overline{z w}$. Since $\bar{z}=a-b \sqrt{-7}=a-b \sqrt{7} i$, it follows that $a-b \sqrt{-7}$ also divides m. If both a and b are nonzero, then $a-b \sqrt{-7} \neq \pm(a+b \sqrt{-7})$. If $a+b \sqrt{-7}=z$ is prime in $\mathcal{O}[\sqrt{-7}]$ then $\bar{z}=a-b \sqrt{-7}$ is too, because if $\bar{z}=w_{1} w_{2}$ then $z=\overline{w_{1} w_{2}}$, and if $\overline{w_{j}}$ is ± 1, the same is true for w_{j}. So if $a+b \sqrt{-7}$ is prime in $\mathcal{O}[\sqrt{-7}]$ with both a and b non-zero, then $a-b \sqrt{-7}$ is an inequivalent prime. If one of them divides the integer m, then they both do, and hence, by unique factorisation, their product $a^{2}+7 b^{2}$ also divides m.
5. Let p be any odd prime which is congruent to 1,2 or $4 \bmod 7$. Then by 1 c$)$ there are integers n and c such that

$$
n p=c^{2}+7=|c+\sqrt{-7}|^{2}
$$

Since $\mathcal{O}[\sqrt{-7}]$ is a unique factorisation domain, one of the primes $z=a+b \sqrt{-7}$ which divides $c+\sqrt{-7}$ must divide p. So then $|z|^{2}=a^{2}+7 b^{2}$ must divide p, by question 4 . Since p is prime, we must have $p=a^{2}+7 b^{2}$. Since p is odd, by question $3, a$ and b are integers, not just half integers.

