a) By quadratic reciprocity, we have

$$\left(\frac{-7}{p}\right) = (-1)^{-4(p-1)/2} \left(\frac{p}{-7}\right) = \left(\frac{p}{-7}\right)$$

But $\left(\frac{p}{-7}\right)$ is 1 if and only if p is a square mod -7, that is, a square mod 7, that is, p = 1, 2 or 4 mod 7.

Quadratic reciprocity works for negative integers as well as positive ones. Of course, it is acceptable to write $-7 = 7 \times (-1)$ and consider $\left(\frac{7}{p}\right)$ and $\left(\frac{-1}{p}\right)$ separately, but it takes longer.

- b) If p > 7 is any integer (not necessarily prime) and $p = a^2 + 7b^2$ for integers a and b then $p \equiv a^2 \mod 7$, and hence p is congruent to 1, 2 or 4 mod 7. (this does not use part a).
- c) From part a) we see that if p is congruent to 1, 2 or 4 mod 7, then there is an integer c such that $-7 \equiv c^2 \mod p$, that is, $c^2 + 7 \equiv 0 \mod p$, that is, $c^2 + 7 \equiv 0 \mod p$, that is, $c^2 + 7 \equiv 0 \mod p$.
- 2. The odd primes less than 100 which are congruent to 1, 2 or 4 mod 7 are:

$$11 = 2^{2} + 7 \times 1^{2}, \quad 23 = 4^{2} + 7 \times 1^{2}, \quad 29 = 1^{2} + 7 \times 2^{2}, \quad 37 = 3^{2} + 7 \times 2^{2}, \quad 43 = 6^{2} + 7 \times 1^{2}, \quad 53 = 5^{2} + 7 \times 2^{2}, \\ 67 = 2^{2} + 7 \times 3^{2}, \quad 71 = 8^{2} + 7 \times 1^{2}, \quad 79 = 4^{2} + 7 \times 3^{2}.$$

3. If a and b are both odd integers, write $a^2 = 8m + 1$ and $b^2 = 8n + 1$. Then $a^2 + b^2 = 8(m + 7n) + 8$. So $(a/2)^2 + (b/2)^2 = 2(m + 7n) + 2$ is even, that is $|(a/2) + (b/2)\sqrt{-7}|^2$ is an even integer. Any element of $\mathcal{O}[\sqrt{-7}]$ is either of this form, or is of the form $c + d\sqrt{-7}$ for integers c and d. It is obvious that $|c + d\sqrt{-7}|^2 = c^2 + 7d^2$ is an integer. So $|z|^2$ is an integer for all $z \in \mathcal{O}[\sqrt{-7}]$.

4. Suppose that $z = a + b\sqrt{-7} = a + b\sqrt{7}i$ divides the integer m in $\mathcal{O}[\sqrt{-7}]$. Then m = zw for some $w \in \mathcal{O}[\sqrt{-7}]$. Taking complex conjugation, $m = \overline{m} = \overline{zw}$. Since $\overline{z} = a - b\sqrt{-7} = a - b\sqrt{7}i$, it follows that $a - b\sqrt{-7}$ also divides m. If both a and b are nonzero, then $a - b\sqrt{-7} \neq \pm (a + b\sqrt{-7})$. If $a + b\sqrt{-7} = z$ is prime in $\mathcal{O}[\sqrt{-7}]$ then $\overline{z} = a - b\sqrt{-7}$ is too, because if $\overline{z} = w_1w_2$ then $z = \overline{w_1w_2}$, and if $\overline{w_j}$ is ± 1 , the same is true for w_j . So if $a + b\sqrt{-7}$ is prime in $\mathcal{O}[\sqrt{-7}]$ with both a and b non-zero, then $a - b\sqrt{-7}$ is an inequivalent prime. If one of them divides the integer m, then they both do, and hence, by unique factorisation, their product $a^2 + 7b^2$ also divides m.

5. Let p be any odd prime which is congruent to 1, 2 or 4 mod 7. Then by 1c) there are integers n and c such that

$$np = c^2 + 7 = |c + \sqrt{-7}|^2.$$

Since $\mathcal{O}[\sqrt{-7}]$ is a unique factorisation domain, one of the primes $z = a + b\sqrt{-7}$ which divides $c + \sqrt{-7}$ must divide p. So then $|z|^2 = a^2 + 7b^2$ must divide p, by question 4. Since p is prime, we must have $p = a^2 + 7b^2$. Since p is odd, by question 3, a and b are integers, not just half integers.