MATH342 Feedback and Solutions 10

1. Using Gauss' reciprocity and since $991 \equiv 1 \bmod 3$,

$$
\begin{aligned}
& \left(\frac{3}{991}\right)=(-1)^{445 \times 1}\left(\frac{991}{3}\right)=-\left(\frac{991}{3}\right)=-\left(\frac{1}{3}\right)=-1 \\
& \left(\frac{12}{991}\right)=\left(\frac{3}{991}\right) \cdot\left(\frac{4}{991}\right)=(-1)\left(\frac{4}{991}\right)=(-1) \cdot 1=-1
\end{aligned}
$$

since 4 is a square integer.
By Gauss' quadratic reciprocity:

$$
\begin{gathered}
\left(\frac{5}{991}\right)=(-1)^{475 \times 2}\left(\frac{991}{5}\right)=\left(\frac{991}{5}\right)=\left(\frac{1}{5}\right)=1 . \\
\left(\frac{-10}{991}\right)=\left(\frac{-1}{991}\right) \times\left(\frac{2}{991}\right) \times\left(\frac{5}{991}\right)=(-1) \times 1 \times 1=-1
\end{gathered}
$$

because $991 \equiv-1 \bmod 8 \equiv-1 \bmod 4$ and for any odd prime p

$$
\begin{gathered}
\left(\frac{-1}{p}\right)=1 \Leftrightarrow p \equiv 1 \quad \bmod 4 \\
\left(\frac{2}{p}\right)=1 \Leftrightarrow p \equiv \pm 1 \quad \bmod 8 . \\
\left(\frac{891}{991}\right)=\left(\frac{-100}{991}\right)=\left(\frac{-10}{991}\right) \times\left(\frac{2}{991}\right) \times\left(\frac{5}{991}\right)=(-1) \times 1 \times 1=-1
\end{gathered}
$$

It is important to remember (as most did) that the formula

$$
\left(\frac{p}{q}\right)=(-1)^{(p-1)(q-1) / 4}\left(\frac{q}{p}\right)
$$

only works if both p and q are prime (and both odd). The other main tool that we need is multiplicativity of the Legendre symbol in the numerator, that is

$$
\left(\frac{q_{1} q_{2}}{p}\right)=\left(\frac{q_{1}}{p}\right) \times\left(\frac{q_{2}}{p}\right)
$$

There are many ways of doing this. The solution above used a factorisation of -100 - and possibly not the best one, because one could also use $-100=-1 \times 10^{2}$ since $\left(\frac{10}{991}\right)^{2}=1$ and $\left(\frac{-1}{991}\right)=-1$ because $991 \cong 3 \bmod 4$. Most solutions I saw used a factorisation $891=3^{4} \times 11$ and used $\left(\frac{3}{991}\right)^{4}=1$ and worked out $\left(\frac{11}{991}\right)$ using quadratic reciprocity.
2.
a)

$$
\left(\frac{31}{97}\right)=(-1)^{48 \times 15}\left(\frac{97}{31}\right)=\left(\frac{97}{31}\right)=\left(\frac{4}{31}\right)=1
$$

as $4=2^{2}$ is a square integer. It can be checked directly that $31 \equiv 15^{2} \bmod 97$ (but this was not part of the question).
b)

$$
\begin{gathered}
\left(\frac{53}{271}\right)=(-1)^{26 \times 135}\left(\frac{271}{53}\right)=\left(\frac{271}{53}\right)=\left(\frac{6}{53}\right)=\left(\frac{2}{53}\right)\left(\frac{3}{53}\right)=(-1) \times(-1)^{1 \times 26}\left(\frac{53}{3}\right) \\
=-\left(\frac{2}{3}\right)=(-1)^{2}=1
\end{gathered}
$$

We used $\left(\frac{2}{53}\right)=-1$ because $53=5 \bmod 8$, that is, $53 \not \equiv \pm 1 \bmod 8$. It can be checked directly that $53 \equiv 18^{2}$ mod 271 (but this was not part of the question).
c) We have $351=3^{2} \times 39=3^{3} \times 13$. So

$$
\begin{gathered}
\left(\frac{351}{787}\right)=\left(\frac{3}{787}\right)^{3}\left(\frac{13}{787}\right)=(-1)^{3 \times 1 \times 393}\left(\frac{787}{3}\right)^{3} \times(-1)^{6 \times 393}\left(\frac{787}{13}\right) \\
=-\left(\frac{1}{3}\right)^{3} \times\left(\frac{7}{13}\right)=-(-1)^{3 \times 6}\left(\frac{13}{7}\right)=-\left(\frac{6}{7}\right)=-\left(\frac{2}{7}\right) \times\left(\frac{3}{7}\right)=-1 \times 1 \times(-1)=1
\end{gathered}
$$

since $2=3^{2} \bmod 7$ and 3 is not a square $\bmod 7$. Of course one can continue to use the quadratic recipocity rules to verify this, using

$$
\left(\frac{3}{7}\right)=(-1)^{1 \times 3}\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1 .
$$

3. By quadratic reciprocity for any odd prime p which is coprime to 5

$$
\left(\frac{5}{p}\right)=(-1)^{(p-1) / 2 \times 2}\left(\frac{p}{5}\right)=\left(\frac{p}{5}\right)=1 \Leftrightarrow p \equiv \pm 1 \quad \bmod 5
$$

This is because $p \equiv \pm 1$ or $\pm 2 \bmod 5$ and

$$
\left(\frac{1}{5}\right)=\left(\frac{-1}{5}\right)=1, \quad\left(\frac{2}{5}\right)=\left(\frac{-2}{5}\right)=-1
$$

because the quadratic residues $\bmod 5$ are 1 and $4 \equiv-1$, and the other (non-quadratic) residues mod 5 are 2 and $3 \equiv-2 \bmod 5$.
4. By quadratic reciprocity,

$$
\left(\frac{7}{p}\right)=(-1)^{3 \times(p-1) / 2}\left(\frac{p}{7}\right)
$$

So

$$
\left(\frac{7}{p}\right)= \begin{cases}\left(\frac{p}{7}\right) & \text { if } p \equiv 1 \bmod 4 \\ -\left(\frac{p}{7}\right) & \text { if } p \equiv-1 \bmod 4\end{cases}
$$

So for any odd prime p which is coprime to 7 ,

$$
\left(\frac{7}{p}\right)=1 \Leftrightarrow\left(p \equiv 1 \bmod 4 \wedge\left(\frac{p}{7}\right)=1\right) \vee\left(p \equiv-1 \bmod 4 \wedge\left(\frac{p}{7}\right)=-1\right)
$$

Now the quadratic residues $\bmod 7$ are 1,2 and $4 \equiv-3$, while the non-quadratic residues are $-1 \equiv 6,-2 \equiv 5$ and 3. So

$$
\begin{aligned}
& \left(\frac{7}{p}\right)=1 \Leftrightarrow(p \equiv 1 \bmod 4 \wedge p \equiv 1,2 \text { or }-3 \bmod 7) \\
& \quad \vee(p \equiv-1 \bmod 4 \wedge p \equiv-1,-2 \text { or } 3 \bmod 7 .)
\end{aligned}
$$

By the Chinese Remainder Theorem, there is a unique solution $\bmod 28$ to $p \equiv a \bmod 4 \wedge p \equiv b$. First we take $p \equiv 1 \bmod 4$ and $p \equiv 1,2$ or $-3 \bmod 7$. The solutions are $p \equiv 1,9$ or $-3 \bmod 28$ respectively. (It is possible to use the formula in the Chinese Remainder Theorem but the solutions are quite easy to spot by inspection, because 28 is not a big number.) Now we take $p \equiv-1 \bmod 4$ and $p \equiv-1,-2$ or $3 \bmod 7$. the solutions are simply the negatives of the previous ones, that is, $p \equiv-1,-9$ or $3 \bmod 28$. So we obtain

$$
\left(\frac{7}{p}\right)=1 \Leftrightarrow p \equiv \pm 1, \pm 3 \text { or } \pm 9 \bmod 28 \text {. }
$$

Most solutions that I saw did not use the Chinese Remainder Theorem. I think it is probably the quickest way, but any correct solution will do.
5. Suppose that there are only finitely many primes which are $\pm 1 \bmod 5$, and let these primes be q_{i}, for $1 \leq i \leq n$. Then write

$$
N=-\prod_{i=1}^{n} q_{i}
$$

Let p be any prime which divides $N^{2}-5$. Then $5 \equiv N^{2} \bmod p$, and hence $p \equiv \pm 1 \bmod 5$. So then there is i such that $q_{i}=p$. But then $q_{i} \mid N$ and $q_{i} \mid N^{2}-5$ and hence $q_{i} \mid 5$ and $q_{i}=5$. But this is impossible because $q_{i} \equiv 1 \pm 5$

