## MATH 342 Problem Sheet 8: Groups and Rings Due Monday 15th April

1. Let $H_{1}$ and $H_{2}$ be groups. Prove that if $a_{1} \in H_{1}$ has order $n_{1}$ and $a_{2} \in H_{2}$ has order $n_{2}$, then the order of $\left(a_{1}, a_{2}\right)$ in $H_{1} \times H_{2}$ is $n$, where $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.

Hence, or otherwise, find all possible orders of elements of $G_{56}$. You are not requred to find elements of thse orders.

Hint: Remember (from lectures a few weeks ago) that if $n=n_{1} \times n_{2}$, and $n_{1}$ and $n_{2}$ are coprime, then $G_{n} \cong G_{n_{1}} \times G_{n_{2}}$.
2. Factorise the following as far as possible:
a) $x^{4}-1$ in $\mathbb{Z}_{5}[x]$;
b) $x^{2}+x+1$ in $\mathbb{Z}_{3}[x]$.
3. Determine which of the following integers $n$ can be written as a sum of two integer squares. In each case show, from the prime factorisation of $n$, that it does, or does not, satisfy the criterion for being a sum of two integer squares, and also either produce integers $a$ and $b$ such that $n=a^{2}+b^{2}$, or show that there are no such integers:

$$
n=37, \quad 38, \quad 40,41,44,45
$$

4. Find the prime factorisation in $\mathbb{Z}[x]$ of $x^{3}-1, x^{4}-1, x^{6}-1$ and $x^{12}-1$. You will need to check the irreduciblity in $\mathbb{Z}[x]$, of three quadratic polynomials and of one quartic. In the case of the quartic, you will need to check that it has no integer zeros and does not factorise as a product of two quadratics with integer coeffficients.

Hence, or otherwise, determine the cyclotomic polynomials $\psi_{d}(x)$ for $d=1,2,3,4,6$ and 12 .
5. Let

$$
\mathcal{O}[\sqrt{5}]=\left\{\left(c_{1}+c_{2} \sqrt{5}\right):\left(c_{1} \in \mathbb{Z} \wedge c_{2} \in \mathbb{Z}\right) \vee\left(c_{1}+\frac{1}{2} \in \mathbb{Z} \wedge c_{2}+\frac{1}{2} \in \mathbb{Z}\right)\right\}
$$

You may assume that $\mathcal{O}[\sqrt{5}]$ is a ring.
a) Show that $\left(c_{1}^{2}-5 c_{2}^{2}\right)$ is an integer whenever both $c_{1}+\frac{1}{2}$ and $c_{2}+\frac{1}{2}$ are both integers.
b) Show that if $n \in \mathbb{Z}$ and $c_{1}+c_{2}[\sqrt{5}]$ divides $n$ in $\mathcal{O}[\sqrt{5}]$ then so does $c_{1}-c_{2} \sqrt{5}$. You may assume that $\theta: \mathcal{O}[\sqrt{5}] \rightarrow \mathcal{O}[\sqrt{5}]$ defined by

$$
\theta\left(c_{1}+c_{2} \sqrt{5}\right)=c_{1}-c_{2} \sqrt{5}
$$

is a well-defined ring isomorphism, in particular, that $\theta(c d)=\theta(c) \theta(d)$ for all $c$ and $d \in \mathbb{Z}[\sqrt{5}]$.
c) Show that if $c_{1}+c_{2} \sqrt{5}$ is a unit in $\mathcal{O}[\sqrt{5}]-$ that is, a divisor of $1-$ if and only if $c_{1}-c_{2} \sqrt{5}$ is a unit, and if and only if $c_{1}^{2}-5 c_{2}^{2}= \pm 1$.
I will collect solutions at the lecture on Monday 15th April. Any solutions which are not handed in then, or by $5 p m$ that day in the folder outside room 516 will not be marked.

