MATH 342 Problem Sheet 6: Orders of elements, primitive roots
 Due Monday 11th March

1. List all the divisors d of 12 and compute the values of Euler's function $\phi(d)$ for them. Compute the sum of all $\phi(d)$ and make sure that this sum is equal to 12 .
2. Show that $5^{58}+5^{26}+5^{6}$ is divisible by 3 .
3. Compute $|n|_{m}$ in each of the following cases:
a) $|3|_{5}$,
b) $|9|_{4}$,
c) $|2|_{7}$
d) $|10|_{11}$
e) $|24|_{11}$

In which cases is $n \bmod m$ a primitive root in G_{m} ?
4. Find all the primitive roots $\bmod 9$.
5. Calculate the number of elements of G_{35} of order 12.

Hint: If the order $\bmod 35$ is 12 , then 12 is the 1 cm of the orders $\bmod 5$ and $\bmod 7$. This is a consequence of what was proved in lectures, because $G_{35} \cong G_{5} \times G_{7}$. What are the possible orders of elements in G_{5} and G_{7} ? If m_{1} and m_{2} are the orders of an element $\bmod 5$ and $\bmod 7$ respectively, what are the possible values of m_{1} and m_{2} giving lcm 12 ?
6. Find all solutions to:
a) $x^{7} \equiv 1 \bmod 9$
b) $x^{15} \equiv 1 \bmod 9$
7. Find the orders of $|8|_{9}$ and $|14|_{17}$ and hence find $|8|_{27}$ and $|14|_{289}$. Hint For any prime p and any $a \in \mathbb{Z}_{+},|a|_{p^{n+1}}=|a|_{p^{n}}$ or $p \cdot\left|a_{p^{n}}\right|$. If $n=|14|_{17}$ then one way to compute $14^{n} \bmod 289$ is to write $14=17-3$ and compute $(17-3)^{n} \bmod 289$ using the binomial theorem. It might also be a good idea to write $n=n_{1} \times n_{2}$ and find a and b such that $(17-3)^{n_{1}}=a \times 17+b \bmod 289$.

Alternatively, if you like, you can use the Big Number Calculator on the module webpage to calculate $14^{n} \bmod 289$.
8.
a) Show that for any odd prime $p>3,3$ divides $\left(p^{n}-1\right) /(p-1)$ if and only $p \equiv 2 \bmod 3$ if n is even, or $p \equiv 1 \bmod 3$ and 3 divides n.
b) Show that 3^{2} divides $\left(p^{n}-1\right) /(p-1)$ if and only if $p \equiv-1 \bmod 9$ and n is even; or $p \equiv 2$ or 5 $\bmod 9$ and $6 \mid n$; or $p \equiv 1 \bmod 3$ and $9 \mid n$.

I will collect solutions at the lecture on Monday 11th March. Any solutions which are not handed in then, or by 5pm that day in the folder outside room 516 will not be marked.

Remark The last question is motivated by the study of odd perfect numbers (which probably do not exist). We know from question 3 on Problem Sheet 3 that if N is an odd perfect number then N can be written in the form $\prod_{k=0}^{r} p_{k}^{n_{0}}$ distinct primes p_{i} with $n_{i} \geq 1, n_{0}$ is odd with $p_{0} \equiv 1 \bmod 4$ and $n_{0} \equiv 1$ $\bmod 4$, and n_{i} is even for $i \geq 1$. We can number the p_{i} for $i \geq 1$ so that $p_{i}<p_{i+1}$ for $1 \leq i<r$. So if $p_{1}=3$ then $3^{2} \mid N$. The facts you are asked to prove in the question above imply that if $p_{1}=3$ then one of the following hold:

- $p_{0} \equiv 2$ or $5 \bmod 9$ and $n_{0} \equiv-1 \bmod 6$;
- $p_{0} \equiv-1 \bmod 9$ and $n_{0} \equiv-1 \bmod 9$;
- there is some $i \geq 2$ such that $p_{i} \equiv 1 \bmod 3$ and $n_{i} \equiv-1 \bmod 9$;
- there are two different values of $i \geq 2$ such that $p_{i} \equiv 1 \bmod 3$ and $n_{i} \equiv-1 \bmod 3$;
- there is one such $i \geq 1$ and $p_{0} \equiv-1 \bmod 3$.

