MATH 342 Problem Sheet 4: Congruences Due Monday 25th February

1. Show that if a is an even integer then $a^{2}=0 \bmod 4$ and if a is an odd integer then $a^{2}=1$ $\bmod 8$.
2. Use question 1 to show the following.
a) If $n=8 k+7(k \in \mathbb{N})$ then n cannot be written as $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$ for $a_{1}, a_{2}, a_{3} \in \mathbb{N}$. Hint: Consider each of the cases when none, one, two or all three of the a_{i} are odd.
b) If $b \in \mathbb{Z}$ then $b^{4}=0$ or $1 \bmod 16$.
3. Let p be a prime. Show that if $k \geq 1$ then $x^{2} \equiv x \bmod p^{k} \operatorname{implies}$ that $x \equiv 0 \bmod p^{k}$ or $x \equiv 1 \bmod p^{k}$.
4. Solve the following system of linear congruences.

$$
\left\{\begin{array}{l}
x \equiv 13 \quad \bmod 11 \\
3 x \equiv 12 \quad \bmod 10 \\
2 x \equiv 10 \quad \bmod 6
\end{array}\right.
$$

5. Show that the following system of congruences has no solution.

$$
\left\{\begin{array}{l}
x \equiv 2 \quad \bmod 7 \\
3 x \equiv 4 \quad \bmod 14
\end{array}\right.
$$

6. Write down the groups of units G_{3}, G_{4} and G_{12}. Also, write down an explicit isomorphism between G_{12} and $G_{3} \times G_{4}$. Write down the multiplication tables of the two groups, to check that the isomorphism does indeed preserve multiplication.

I will collect solutions at the lecture on Monday 25th February. Any solutions which are not handed in then, or by $5 p m$ that day in the folder outside room 516 will not be marked.

