Solutions to Practice exam

2 marks 3 marks	1. $x \equiv y \bmod n \quad \Leftrightarrow \quad n \mid(x-y)$. Clearly, multiplying by $m, x \equiv y \bmod n \Rightarrow m x \equiv m y \bmod n$ If $\operatorname{gcd}(n, m)=1$ then there are integers a and b such that $a n+b m=1$. Then $b m \equiv 1 \bmod n$. So if $m x \equiv m y \bmod n$ then $b m x \equiv b m y \bmod n$, that is, $x \equiv y \bmod n$.
2 marks	a) $3 x \equiv 6 \bmod 9 \Leftrightarrow x \equiv 2 \bmod 3$
2 marks	b) $3 x \equiv 5 \bmod 6 \Rightarrow 5 \equiv 0 \bmod 3$, which is not true. So there are no integer solutions
2 marks	c) If $x=0,1,2,3$ or 4 , then $x^{2}+x+1$ is $1,3,2,1$ or $4 \bmod 5$. So there are no integer solutions. Another more sophisiticated way to do this is to note that, multiplying by $x-1$, $x^{2}+x+1 \equiv 0 \bmod 5 \Rightarrow x^{3}-1 \equiv 0 \bmod 5 \Rightarrow x \equiv 1 \bmod 5$ where the last implication uses Fermat's Little Theorem, and the fact that $\operatorname{gcd}(3,4)=1$. But $1^{2}+1+1 \neq 0 \bmod 5$ so there are no solutions to the original equation
2 marks	d) $x^{2} \equiv 1 \bmod 7 \Rightarrow(x-1)(x+1) \equiv 0 \bmod 7 \Rightarrow x \equiv \pm 1 \bmod 7 .$
7 marks	e) We have $3^{-1} \equiv 5 \bmod 7$ and $3^{-1} \equiv 2 \bmod 5$. So multiplying the first equation by 5 and the third by 2 , our system of simulataneous equations becomes $x \equiv 5 \bmod 7, \quad x \equiv 5 \quad \bmod 6, \quad x \equiv 4 \bmod 5 .$ There is a solution since any two of 5,6 and 7 are coprime. The lcm of these three is 210 so the answer will be unique $\bmod 210$. From the first equation we obtain $x=5+7 y$. Substituting in the second equation gives $y \equiv 0 \bmod 6$ and hence $y=6 z$ and $x=42 z+5$. Substituting in the third equation gives $2 z+5 \equiv 4 \bmod 5$, that is, $z \equiv 2 \bmod 5$. So $x \equiv 89 \bmod 210$. Alternatively we can use the Chinese Remainder formula. Since $6 \times 5=$ $30 \equiv 2 \bmod 7$ has inverse $4 \bmod 7,7 \times 5=35$ has inverse $5 \bmod 7$ and $7 \times 6=42$ has inverse $3 \bmod 5$, the solution is $x \equiv 5 \times 4 \times 30+5 \times 5 \times 35+4 \times 3 \times 42 \equiv-30+35+84 \equiv 89 \bmod 210 .$

4 marks	2a) Since $k \mid n$! for all $2 \leq k \leq n$, we also have $k \mid n!+k$ for $2 \leq k \leq n$. Since $k+n!>k$, the number $n!+k$ is composite. There are $n-1$ of these numbers and so if p is the largest prime len! +1 and q is the smallest $\geq n!+n+1$ we have $q-p \geq n$, and $G(p, q)$ is a prime gap of length $\geq n$
1 mark	The first 4 primes are: $2,3,5,7,11$ So if we take $p=7$ then p is the smallest prime such that $G(p, q)$ is a prime gap of length 6 for some q : with $q=11$ and $G(p, q)=G(7,11)$.
2 marks	b) FTA: Let $n \in \mathbb{Z}_{+}$with $n \geq 2$. Then there are primes q_{i} for $1 \leq i \leq m$ and $q_{i}<q_{i+1}$ and $k_{i} \in Z_{+}$such that $n=\prod_{i=1}^{m} q_{i}^{k_{i}}$. This representation is unique.
3 marks	Now if $n \in \mathbb{Z}_{+}$with $n \geq 2$ is composite, we can write $n=k \times \ell$ for integers k and ℓ with $1<k \leq \ell<n$. Then $k^{2} \leq k \times \ell=n$ and $k \leq \sqrt{n}$. By the FTA there is a prime p with $p \mid k$. But then $p \mid n$ also, and $p \leq \sqrt{n}$ also.
3 marks	We have $7^{2}=49<89$ and $11^{2}=121>97$. the primes ≤ 7 are $2,3,5$ and 7 . Clearly neither number is divisible by 2 or $5=-$ not by 3 since in each case the sum of the digits is not divisible by 3 . Also neither number is divisible by 7 as the residues $\bmod 7$ of 89 and 97 are 5 and 6 respectively.
1 mark	c) $\pi(x)$ is the number of primes $\leq x$
2 marks	Prime Number Theorem: $\lim _{x \rightarrow+\infty} \frac{\pi(x)}{x / \ln x}=1 .$
4 marks	If n is sufficiently large given n, we have $\pi(n) \leq \frac{5 n}{4 \ln n}$. If m is the largest integer with $p_{m} \leq n$ then $\pi(n)=m$. If $p_{k+1}-p_{k} \leq \frac{1}{2} \ln n$ for all $k \leq m$ then $n \leq p_{m+1}-1 \leq 1+\sum_{k=1}^{m}\left(p_{k+1}-p_{k}\right) \leq 1+\frac{1}{2} \ln n \times m \leq 1+\frac{1}{2} \times \ln n \times \frac{5}{4} \times \frac{n}{\ln n}=1+\frac{5 n}{8}$ This gives a contradiction if $3 n / 8>1$, in particular, for $n \geq 3$.

1 mark	4. For any integer $n \in \mathbb{Z}_{+}, \phi(n)$ is the number of $k \in \mathbb{Z}_{+}$with $k \leq n$ such that $\operatorname{gcd}(k, n)=1$
2 marks	If p is prime and $a \geq 1$, then for $k \leq p^{a}$, we have $\operatorname{gcd}\left(k, p^{a}\right)>1 \Leftrightarrow p \mid k \Leftrightarrow k=p \ell, \quad 1 \leq \ell \leq p^{a-1} .$ So $\phi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a-1}(p-1) .$
2 marks	The divisors of p^{a} are p^{i} for $0 \leq i \leq a$, and $\int p^{a}=\sum_{i=0}^{a} p^{i}=\frac{p^{a+1}-1}{p-1} .$
3 marks	If $n=\prod_{i=1}^{m} p_{i}^{k_{i}}$ where the p_{i} are all distinct primes and $m_{i} \geq 1$ then $\phi(n)=\prod_{i=1}^{m} p_{i}^{k_{i}-1}\left(p_{i}-1\right),$ and $\int n=\prod \frac{p_{i}^{k_{i}+1}-1}{p_{i}-1} .$
3 marks	We have $2016=2^{3} \times 252=2^{5} \times 63=2^{5} \times 3^{2} \times 7 .$ So $\phi(2016)=2^{4} \times 3 \times 2 \times 6=64 \times 9=576 .$
3 marks	$\begin{gathered} \phi(11!)=\phi\left(2 \times 3 \times 2^{2} \times 5 \times 2 \times 3 \times 7 \times 2^{3} \times 3^{2} \times 2 \times 5 \times 11\right) \\ =\phi\left(2^{8} \times 3^{4} \times 5^{2} \times 7 \times 11\right)=2^{7} \times 3^{3} \times 2 \times 5 \times 2^{2} \times 6 \times 10 \\ =2^{12} \times 3^{4} \times 5^{2}=8294400 . \end{gathered}$
6 marks	If p is prime and $p \mid n$ then $p-1 \mid \phi(n)$. If p is an odd prime then $\phi\left(p^{k}\right)=p^{k-1}(p-1)$ is even for any integer $k \geq 1$, and $\phi\left(2^{k}\right)=2^{k-1}$. Taking the product of these we see that $\phi(n)$ is even for all n, unless $n=2$, and $\phi(2)=1$ If $n=n_{1} n_{2}$ then $\phi(n)=\phi\left(n_{1}\right) \phi\left(n_{2}\right)$. If $\phi(n)=10$ and $n=n_{1} n_{2}$ for coprime n_{1} and n_{2} then, without loss of generality, $\phi\left(n_{1}\right)=10$ and $\phi\left(n_{2}\right)=1$. So $n_{2}=2$ and n_{1} is odd - and prime. So $n_{1}=11$. So the only possibilities are $n=11$ and $n=22$.

3 marks	5. If $x \equiv y \bmod n_{1}$ and $x \equiv y \bmod n_{2}$ then $n_{1} \mid x-y$ and $n_{2} \mid x-y$. Since n_{1} and n_{2} are coprime, this means that $n_{1} n_{2} \mid x-y$ and hence $x \equiv y \bmod \left(n_{1} n_{2}\right)$.
2 marks	For example take $n_{1}=4$ and $n_{2}=6$. Take $x=12$ and $y=0$. Then $x \equiv y \bmod 4$ and $x \equiv y \bmod 6$ but $x \not \equiv y \bmod 24$
4 marks	$2046=11 \times 186$ and $2^{2046}=\left(2^{11}\right)^{186} \equiv 1^{186} \equiv 1 \bmod 2047$ If $2^{11} \equiv$ $1 \bmod p$ then by Fermat's Little Theorem $\operatorname{gcd}(11, p-1)>1$ and hence since 11 is prime we have $11 \mid p-1$, that is, $p \equiv 1 \bmod 11$. The only primes satisfying this under 100 are 23,67 and 89 . It is easily verified that 23 divides 2047 and $2047=23 \times 89$.
2 marks	Korselt's condition on n is that $n=\prod_{i=1}^{m} p_{i}$ where all the p_{i} are distinct primes, and $p_{i}-1 \mid n-1$ for all i.
3 marks	$2821=7 \times 403=7 \times 13 \times 31 \mathrm{~s}$ a product of distinct primes, and $2820=2^{2} \times 705=2^{2} \times 5 \times 141=2^{2} \times 5 \times 3 \times 47$. Since $7-1=2 \times 3$ and $13-1=2^{2} \times 3$ and $30-2 \times 3 \times 5$ all of these divide 2820 , and 2821 is a Carmichael number.
1 mark	If $a^{n-1}=b^{n-1} \equiv 1 \bmod n$ then $\left(a b^{-1}\right)^{n-1} \equiv 1 \bmod n$. So the set of pseudoprimes is a group
5 marks	As above, we have $G_{35} \cong G_{5} \times G_{7}$. Since 5 and 7 are prime, the groups G_{5} and G_{7} are cyclic of orders $4=5-1$ and $6=7-1$. So the order of any element of G_{35} is a divisor of $\operatorname{lcm}(6,4)=12$. Now $34=2 \times 17$. For $a \in G_{35}, 35$ is a pseudoprime to base a (or $a \equiv 1$) if and only if $a^{34} \equiv 1 \bmod 35$. Since $\operatorname{gcd}(12,34)=2$ this happens if and only if $a^{2} \equiv 1 \bmod 35$. Since $a^{2} \equiv 1 \bmod 5$ for just two elements of G_{5}, and $a^{2} \equiv 1 \bmod 7$ for just two elements of G_{7} there are four such elements of G_{35}. They clearly include $\pm 1 \bmod 35$. The others are $\pm 6 \bmod 35$.

3 marks	6a) For any $z \in \mathbb{C}$, write $z=x+i y$ for real x and y. then there are integers q_{1} and q_{2} such that $\left\|x-q_{1}\right\| \leq \frac{1}{2}$ and $\left\|y-q_{2}\right\| \leq \frac{1}{2}$. Then if $q=q_{1}+i q_{2}$ we have $q \in \mathbb{Z}[i]$ and $\|z-q\|^{2} \leq \frac{1}{4}+\frac{1}{4} \leq \frac{1}{2}$. Now let a and $b \in \mathbb{Z}[i]$ with $b \neq 0$ and let $q \in \mathbb{Z}[i]$ with $\|a / b-q\|^{2} \leq \frac{1}{2}<1$. Then write $r=a-q b \in \mathbb{Z}[i]$. We have $v(r)\|r\|^{2}=\|z-q\|^{2}\|b\|^{2}<\|b\|^{2}=v(b)$ and $a=q b+r$. Also $v(c d)=\|c\|^{2}\|d\|^{2} \geq\|c\|^{2}=v(c)$ for all c and $d \in \mathbb{Z}[i]$ with $d \neq 0$. So both properties of a Euclidean function hold.
3 marks	b) Since conjugation is multiplicative, $n=(s+i t)(u+i v) \Leftrightarrow n=(s-i t)(u-i v) .$
	So $s+i t$ divides n if and only if $s-i t$ does, and $s+i t\left\|n \Rightarrow s^{2}+t^{2}\right\| n^{2} .$
3 marks	If $n_{j}=s_{j}^{2}+t_{j}^{2}=\left(s_{j}+i t_{j}\right) \overline{s_{j}+i t_{j}}$ then $n_{1} n_{2}=\left(s_{1}+i t_{1}\right)\left(s_{2}+i t_{2}\right) \overline{\left(s_{1}+i t_{1}\right)\left(s_{2}+i t_{2}\right)}=\left(s_{1} s_{2}-t_{1} t_{2}\right)^{2}+\left(s_{1} t_{2}+s_{2} t_{1}\right)^{2}$
3 marks	c) Since $s+i t$ is prime in $\mathbb{Z}[i]$, we have $\operatorname{gcd}(s, t)=1$. If $(s+i t)(s-i t) s^{2}+t^{2}=u v$ for integers u and $v \geq 2$, then neither u nor v divides $s+i t$ in $\mathbb{Z}[i]$, contradicting unique factorisation. So $s^{2}+t^{2}$ must be prime, and since $s^{2}+t^{2} \mid n^{2}$ by a), we have $s^{2}+t^{2} \mid n$.
5 marks	d) If $n=s^{2}+t^{2}$ then we can write $s+i t=d \prod_{j=1}^{k}\left(s_{j}+i t_{j}\right)$ where $d \in \mathbb{Z}$ and s_{j} and t_{j} are both non-zero integers, for all $1 \leq j \leq k$, and $s_{j}+i t_{j}$ is prime in $\mathbb{Z}[i]$. This gives $s^{2}+t^{2}=d^{2} \prod_{j=1}^{k}\left(s_{j}^{2}+t_{j}^{2}\right)$ and by d) $s_{j}^{2}+t_{j}^{2}$ is a positive prime integer for each $1 \leq j \leq k$. We have $k \geq 1$ because both s and t are non-zero .
3 marks	e) Suppose there are only finitely many such primes q_{j} for $1 \leq j \leq n$, and let $N_{1}=\prod_{j=1}^{n} q_{j}^{2}$ and $N=N_{1}^{2}+1$. Then $N=N_{1}^{2}+1^{2}$ is a sum of two non-zero integer squares. By d) there is a prime integer p dividing N which is also a sum of two integer squares. But then $p=q_{j}$ for some j. This is impossible because q_{j} divides N_{1} and cannot also divide $N=N_{1}^{2}+1$.

2 marks	7. The Legendre symbol is defined by $\left(\frac{q}{p}\right)=\left\{\begin{array}{l} 1 \\ -1 \text { otherwise } \end{array} \quad \text { if } q \equiv a^{2} \bmod p \text { for some } a \in \mathbb{Z}\right.$
5 marks	If $q \equiv a^{2} \bmod p$ then $q^{(p-1) / 2} \equiv a^{p-1} \equiv 1$ by Fermat's Little Theorem. Conversely if $q^{(p-1) / 2} \equiv 1$ and b is a primitive element of G_{p} and $q=b^{m}$ then $b^{m(p-1) / 2} \equiv 1$ implies that $p-1 \mid m(p-1) / 2$, that is, m must be even and hence $q \equiv\left(b^{(m-1) / 2}\right)^{2}$. Since $F\left(q_{1} q_{2}\right) \equiv\left(q_{1} q_{2}\right)^{(p-1) / 2} \equiv q_{1}^{(p-1) / 2} q_{2}^{(p-1) / 2} \equiv F\left(q_{1}\right) F\left(q_{2}\right) \bmod p$ we see that $q \mapsto F(q) \bmod p$ is a homomorphism. Since $-1 \not \equiv 1 \bmod p$ we see that F itself is a homomorphism.
2 marks	$\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$
3 marks	For any odd prime p, $\left(\frac{2}{p}\right)=1 \Leftrightarrow p= \pm 1 \bmod 8$ If p and q are odd primes, then $\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{(p-1)(q-1) / 4}$
2 marks	So $\left(\frac{2}{p}\right)$ and $\left(\frac{-1}{p}\right)$ have the same sign if and only if $p=1 \bmod 8-$ when they are both $1-$ or $p \equiv 3 \bmod 8-$ when they are both -1 .
2 marks	$\left(\frac{5}{19}\right) \times\left(\frac{19}{5}\right)=(-1)^{2 \times 9}=1 \text { and }\left(\frac{19}{5}\right)=\left(\frac{4}{5}\right)=1$ since $4=2^{2}$. So $\left(\frac{5}{19}\right)=1 .$

4 marks $\left.\quad \left\lvert\, \begin{array}{l}\text { We have } \\ \\ \\ \hline 99\end{array}\right.\right)=\left(\frac{23}{89}\right) \times\left(\frac{2}{89}\right)=1 \times\left(\frac{23}{89}\right)$
since $89 \equiv 1 \bmod 8$.Then

$$
\left(\frac{23}{89}\right) \times\left(\frac{89}{23}\right)=(-1)^{11 \times 44}=1
$$

Then

$$
\left(\frac{89}{23}\right)=\left(\frac{20}{23}\right)=\left(\frac{2}{23}\right)^{2} \times\left(\frac{5}{23}\right)=\left(\frac{5}{23}\right)
$$

and

$$
\left(\frac{5}{23}\right) \times\left(\frac{23}{5}\right)=(-1)^{2 \times 11}=1
$$

Then

$$
\left(\frac{23}{5}\right)=\left(\frac{3}{5}\right)=-1
$$

So altogether we have

$$
\left(\frac{46}{89}\right)=\left(\frac{3}{5}\right)=-1
$$

