
Solutions to Practice exam

2 marks 1. x ≡ y modn ⇔ n | (x− y).
3 marks Clearly, multiplying by m, x ≡ y modn ⇒ mx ≡ my modn If

gcd(n,m) = 1 then there are integers a and b such that an + bm = 1.
Then bm ≡ 1 modn. So if mx ≡ my modn then bmx ≡ bmy modn,
that is, x ≡ y modn.

2 marks a) 3x ≡ 6 mod 9⇔ x ≡ 2 mod 3

2 marks b) 3x ≡ 5 mod 6 ⇒ 5 ≡ 0 mod 3, which is not true. So there are no
integer solutions

2 marks c) If x = 0, 1, 2, 3 or 4, then x2 +x+ 1 is 1, 3, 2, 1 or 4 mod 5. So there
are no integer solutions. Another more sophisiticated way to do this is
to note that, multiplying by x− 1,

x2 + x+ 1 ≡ 0 mod 5⇒ x3 − 1 ≡ 0 mod 5⇒ x ≡ 1 mod 5

where the last implication uses Fermat’s Little Theorem, and the fact
that gcd(3, 4) = 1. But 12 + 1 + 1 6= 0 mod 5 so there are no solutions
to the original equation

2 marks d)

x2 ≡ 1 mod 7⇒ (x− 1)(x+ 1) ≡ 0 mod 7⇒ x ≡ ±1 mod 7.

7 marks e) We have 3−1 ≡ 5 mod 7 and 3−1 ≡ 2 mod 5. So multiplying the first
equation by 5 and the third by 2, our system of simulataneous equations
becomes

x ≡ 5 mod 7, x ≡ 5 mod 6, x ≡ 4 mod 5.

There is a solution since any two of 5, 6 and 7 are coprime. The lcm
of these three is 210 so the answer will be unique mod 210. From the
first equation we obtain x = 5+7y. Substituting in the second equation
gives y ≡ 0 mod 6 and hence y = 6z and x = 42z + 5. Substituting
in the third equation gives 2z + 5 ≡ 4 mod 5, that is, z ≡ 2 mod 5. So
x ≡ 89 mod 210.
Alternatively we can use the Chinese Remainder formula. Since 6× 5 =
30 ≡ 2 mod 7 has inverse 4 mod 7, 7× 5 = 35 has inverse 5 mod 7 and
7× 6 = 42 has inverse 3 mod 5, the solution is

x ≡ 5× 4× 30 + 5× 5× 35 + 4× 3× 42 ≡ −30 + 35 + 84 ≡ 89 mod 210.
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4 marks 2a) Since k | n! for all 2 ≤ k ≤ n, we also have k | n! + k for 2 ≤ k ≤ n.
Since k+n! > k, the number n!+k is composite. There are n−1 of these
numbers and so if p is the largest prime len! + 1 and q is the smallest
≥ n! +n+ 1 we have q− p ≥ n, and G(p, q) is a prime gap of length ≥ n

1 mark The first 4 primes are:
2, 3, 5, 7, 11.

So if we take p = 7 then p is the smallest prime such that G(p, q) is a
prime gap of length 6 for some q: with q = 11 and G(p, q) = G(7, 11).

2 marks b) FTA: Let n ∈ Z+ with n ≥ 2. Then there are primes qi for 1 ≤ i ≤ m
and qi < qi+1 and ki ∈ Z+ such that n =

∏m
i=1 q

ki
i . This representation

is unique.

3 marks Now if n ∈ Z+ with n ≥ 2 is composite, we can write n = k × ` for
integers k and ` with 1 < k ≤ ` < n. Then k2 ≤ k × ` = n and k ≤

√
n.

By the FTA there is a prime p with p | k. But then p | n also, and
p ≤
√
n also.

3 marks We have 72 = 49 < 89 and 112 = 121 > 97. the primes ≤ 7 are 2, 3, 5
and 7. Clearly neither number is divisible by 2 or 5 =– not by 3 since
in each case the sum of the digits is not divisible by 3. Also neither
number is divisible by 7 as the residues mod 7 of 89 and 97 are 5 and 6
respectively.

1 mark c)π(x) is the number of primes ≤ x
2 marks Prime Number Theorem:

lim
x→+∞

π(x)

x/ lnx
= 1.

4 marks If n is sufficiently large given n, we have π(n) ≤ 5n
4 lnn . If m is the largest

integer with pm ≤ n then π(n) = m. If pk+1 − pk ≤ 1
2 lnn for all k ≤ m

then

n ≤ pm+1−1 ≤ 1+

m∑
k=1

(pk+1−pk) ≤ 1+
1

2
lnn×m ≤ 1+

1

2
×lnn×5

4
× n

lnn
= 1+

5n

8
.

This gives a contradiction if 3n/8 > 1, in particular, for n ≥ 3.
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2 marks 3. Fermat’s Little Theorem: Let p be prime. Then ap ≡ a mod p for all
a ∈ Z, and ap−1 ≡ 1 mod p if a 6≡ 0 mod p.

2 marks (i) By Fermat’s Little Theorem with p = 17 we have a16 ≡ 1 mod 17
for all integers a which are coprime to 17 – which includes 2 and 3. So,
since 96 = 6× 16,

299 + 398 ≡ 23 + 32 ≡ 0 mod 17,

which means that 299 + 398 is divisible by 17

4 marks (ii) The order of any element of G17 is a divisor of 16, that is 2k for any
0 ≤ k ≤ 4. We have 24 ≡ −1 mod 17 and hence 28 ≡ 1. So 2 has order
8, 4 = 22 has order 4, 42 = 16 ≡ −1 has order 2. Of course, 1 has order
1.To find an element of order 16: 32 = 9 and 34 = 81 ≡ −4. So 38 ≡ −1
and 3 has order 16.

4 marks The primitive elements are all elements of the form 3n where n is coprime
to 16. There are 8 such elements, given by the odd numbers < 16.
Apart from 3 itself we have 33 ≡ 10, 35 ≡ 90 ≡ 5, 37 ≡ 45 ≡ 11,
39 ≡ 99 ≡ 14 ≡ −3, and the others must be −10 ≡ 7, −5 ≡ 12 and
−11 ≡ 6. So altogether the primitive elements are

3, 5, 6, 7, 10, 11, 12, 14.

3 marks If n ≡ 1 mod 17 then

nm − 1

n− 1
=

m−1∑
k=0

nk ≡ m mod 17,

because nk ≡ 1 mod 17 for all k ∈ N. So this is divisible by 17 if and
only if m is divisible by 17.

2 marks If n 6= 1 mod 17 then
nm − 1

n− 1
is divisible by 17 if and only if nm ≡

1 mod 17. Since n 6≡ 1, this is only possible if gcd(m, 16) > 1, or,
equivalently, since 16 = 24, if m is even .

3 marks If m is even but m is not divisible by 4 and nm ≡ 1 mod 17 then
gcd(m, 16) = 2 and the order of n mod 17 must be 2. The only possibil-
ity is n ≡ −1 mod 17. If m is divisible by 4 but not 8 then gcd(m, 16) = 4
and if nm ≡ 1 mod 17 then the order of n modm must be 2 or 4. The
elements of order 4 are ±4 mod 17. So the only possible solutions are
−1 mod 17 and ±4 mod 17.
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1 mark 4. For any integer n ∈ Z+, φ(n) is the number of k ∈ Z+ with k ≤ n
such that gcd(k, n) = 1

2 marks If p is prime and a ≥ 1, then for k ≤ pa, we have

gcd(k, pa) > 1⇔ p | k ⇔ k = p`, 1 ≤ ` ≤ pa−1.

So
φ(pa) = pa − pa−1 = pa−1(p− 1).

2 marks The divisors of pa are pi for 0 ≤ i ≤ a, and∫
pa =

a∑
i=0

pi =
pa+1 − 1

p− 1
.

3 marks If

n =
m∏
i=1

pkii

where the pi are all distinct primes and mi ≥ 1 then

φ(n) =
m∏
i=1

pki−1i (pi − 1),

and ∫
n =

∏ pki+1
i − 1

pi − 1
.

3 marks We have
2016 = 23 × 252 = 25 × 63 = 25 × 32 × 7.

So
φ(2016) = 24 × 3× 2× 6 = 64× 9 = 576.

3 marks
φ(11!) = φ(2× 3× 22 × 5× 2× 3× 7× 23 × 32 × 2× 5× 11)

= φ(28 × 34 × 52 × 7× 11) = 27 × 33 × 2× 5× 22 × 6× 10

= 212 × 34 × 52 = 8294400.

6 marks If p is prime and p | n then p − 1 | φ(n). If p is an odd prime then
φ(pk) = pk−1(p − 1) is even for any integer k ≥ 1, and φ(2k) = 2k−1.
Taking the product of these we see that φ(n) is even for all n, unless
n = 2, and φ(2) = 1 If n = n1n2 then φ(n) = φ(n1)φ(n2). If φ(n) = 10
and n = n1n2 for coprime n1 and n2 then, without loss of generality,
φ(n1) = 10 and φ(n2) = 1. So n2 = 2 and n1 is odd – and prime. So
n1 = 11. So the only possibilities are n = 11 and n = 22.
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3 marks 5. If x ≡ y modn1 and x ≡ y modn2 then n1 | x − y and n2 | x − y.
Since n1 and n2 are coprime, this means that n1n2 | x − y and hence
x ≡ y mod (n1n2).

2 marks For example take n1 = 4 and n2 = 6. Take x = 12 and y = 0. Then
x ≡ y mod 4 and x ≡ y mod 6 but x 6≡ y mod 24

4 marks 2046 = 11 × 186 and 22046 = (211)186 ≡ 1186 ≡ 1 mod 2047 If 211 ≡
1 mod p then by Fermat’s Little Theorem gcd(11, p− 1) > 1 and hence
since 11 is prime we have 11 | p − 1, that is, p ≡ 1 mod 11. The only
primes satisfying this under 100 are 23, 67 and 89. It is easily verified
that 23 divides 2047 and 2047 = 23× 89.

2 marks Korselt’s condition on n is that n =
∏m

i=1 pi where all the pi are distinct
primes, and pi − 1 | n− 1 for all i.

3 marks 2821 = 7 × 403 = 7 × 13 × 31 s a product of distinct primes, and
2820 = 22 × 705 = 22 × 5× 141 = 22 × 5× 3× 47. Since 7− 1 = 2× 3
and 13− 1 = 22× 3 and 30− 2× 3× 5 all of these divide 2820, and 2821
is a Carmichael number.

1 mark If an−1 = bn−1 ≡ 1 modn then (ab−1)n−1 ≡ 1 modn. So the set of
pseudoprimes is a group

5 marks As above, we have G35
∼= G5 ×G7. Since 5 and 7 are prime, the groups

G5 and G7 are cyclic of orders 4 = 5 − 1 and 6 = 7 − 1. So the order
of any element of G35 is a divisor of lcm(6, 4) = 12. Now 34 = 2 × 17.
For a ∈ G35, 35 is a pseudoprime to base a (or a ≡ 1) if and only
if a34 ≡ 1 mod 35. Since gcd(12, 34) = 2 this happens if and only if
a2 ≡ 1 mod 35. Since a2 ≡ 1 mod 5 for just two elements of G5, and
a2 ≡ 1 mod 7 for just two elements of G7 there are four such elements
of G35. They clearly include ±1 mod 35. The others are ±6 mod 35.
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3 marks 6a) For any z ∈ C, write z = x + iy for real x and y. then there are
integers q1 and q2 such that |x − q1| ≤ 1

2 and |y − q2| ≤ 1
2 . Then if

q = q1 + iq2 we have q ∈ Z[i] and |z − q|2 ≤ 1
4 + 1

4 ≤
1
2 . Now let a and

b ∈ Z[i] with b 6= 0 and let q ∈ Z[i] with |a/b− q|2 ≤ 1
2 < 1. Then write

r = a − qb ∈ Z[i]. We have v(r)|r|2 = |z − q|2|b|2 < |b|2 = v(b) and
a = qb+ r. Also v(cd) = |c|2|d|2 ≥ |c|2 = v(c) for all c and d ∈ Z[i] with
d 6= 0. So both properties of a Euclidean function hold.

3 marks b) Since conjugation is multiplicative,

n = (s+ it)(u+ iv) ⇔ n = (s− it)(u− iv).

So s+ it divides n if and only if s− it does, and

s+ it | n⇒ s2 + t2 | n2.

3 marks If
nj = s2j + t2j = (sj + itj)sj + itj

then

n1n2 = (s1+it1)(s2+it2)(s1 + it1)(s2 + it2) = (s1s2−t1t2)2+(s1t2+s2t1)
2.

3 marks c) Since s+ it is prime in Z[i], we have gcd(s, t) = 1. If

(s+ it)(s− it)s2 + t2 = uv

for integers u and v ≥ 2, then neither u nor v divides s + it in Z[i],
contradicting unique factorisation. So s2 + t2 must be prime, and since
s2 + t2 | n2 by a), we have s2 + t2 | n.

5 marks d) If n = s2 + t2 then we can write

s+ it = d
k∏

j=1

(sj + itj)

where d ∈ Z and sj and tj are both non-zero integers, for all 1 ≤ j ≤ k,
and sj + itj is prime in Z[i]. This gives

s2 + t2 = d2
k∏

j=1

(s2j + t2j )

and by d) s2j + t2j is a positive prime integer for each 1 ≤ j ≤ k. We have
k ≥ 1 because both s and t are non-zero .

3 marks e) Suppose there are only finitely many such primes qj for 1 ≤ j ≤ n,
and let N1 =

∏n
j=1 q

2
j and N = N2

1 + 1. Then N = N2
1 + 12 is a sum of

two non-zero integer squares. By d) there is a prime integer p dividing
N which is also a sum of two integer squares. But then p = qj for
some j. This is impossible because qj divides N1 and cannot also divide
N = N2

1 + 1.
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2 marks 7. The Legendre symbol is defined by(
q

p

)
=

{
1 if q ≡ a2 mod p for some a ∈ Z
−1 otherwise

5 marks If q ≡ a2 mod p thenq(p−1)/2 ≡ ap−1 ≡ 1 by Fermat’s Little Theorem.
Conversely if q(p−1)/2 ≡ 1 and b is a primitive element of Gp and q = bm

then bm(p−1)/2 ≡ 1 implies that p − 1 | m(p − 1)/2, that is, m must be
even and hence q ≡ (b(m−1)/2)2. Since

F (q1q2) ≡ (q1q2)
(p−1)/2 ≡ q(p−1)/21 q

(p−1)/2
2 ≡ F (q1)F (q2) mod p

we see that q 7→ F (q) mod p is a homomorphism. Since −1 6≡ 1 mod p
we see that F itself is a homomorphism.

2 marks (
−1

p

)
= (−1)(p−1)/2

3 marks For any odd prime p,(
2

p

)
= 1⇔ p = ±1 mod 8.

If p and q are odd primes, then(
q

p

)(
p

q

)
= (−1)(p−1)(q−1)/4.

2 marks So

(
2

p

)
and

(
−1

p

)
have the same sign if and only if p = 1 mod 8 —

when they are both 1 – or p ≡ 3 mod 8 — when they are both −1.

2 marks (
5

19

)
×
(

19

5

)
= (−1)2×9 = 1 and

(
19

5

)
=

(
4

5

)
= 1

since 4 = 22. So (
5

19

)
= 1.
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4 marks We have (
46

89

)
=

(
23

89

)
×
(

2

89

)
= 1×

(
23

89

)
since 89 ≡ 1 mod 8.Then(

23

89

)
×
(

89

23

)
= (−1)11×44 = 1.

Then (
89

23

)
=

(
20

23

)
=

(
2

23

)2

×
(

5

23

)
=

(
5

23

)
and (

5

23

)
×
(

23

5

)
= (−1)2×11 = 1.

Then (
23

5

)
=

(
3

5

)
= −1.

So altogether we have (
46

89

)
=

(
3

5

)
= −1.
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