Solutions to MATH342 exam May 2012

Bookwork 2marks	1. $x \equiv y \bmod n \Leftrightarrow n \mid$
3marks	$x_{1} x_{2}-y_{1} y_{2}=x_{1}\left(x_{2}-y_{2}\right)+\left(x_{1}-x_{2}\right) y_{2}$. So if $n \mid\left(x_{1}-y_{1}\right)$ and $n \mid\left(x_{2}-y_{2}\right)$ then $n \mid\left(x_{1} x_{2}-y_{1} y_{2}\right)$. That is, if $x_{1} \equiv x_{2} \bmod n$ and $y_{1} \equiv y_{2} \bmod n$ then $x_{1} x_{2} \equiv y_{1} y_{2} \bmod n$.
Standard homework exercises 2 marks	a) $x^{2} \equiv 1 \bmod 5 \Leftrightarrow(x-1)(x+1) \bmod 5 \Leftrightarrow x= \pm 1 \bmod 5$.
2 marks	b) If $x= \pm 1 \bmod 5$ or $x \equiv 0 \bmod 5$ then $x^{3} \equiv x \not \equiv 2 \bmod 5$. If $x \equiv 2 \bmod 5$, then $x^{3} \equiv 3 \bmod 5$. If $x \equiv 3 \bmod 5$ then $x^{3} \equiv 2$ $\bmod 5$
2 marks	c) $2 x \equiv 3 \bmod 4 \Leftrightarrow 2 x=3+4 n$ for some $n \in \mathbb{Z}$. This has no solutions
2 marks	d) $6 x \equiv 8 \bmod 14 \Leftrightarrow 3 x \equiv 4 \bmod 7 \Leftrightarrow 5 \times 3 x \equiv x \equiv 5 \times 4 \equiv 6$ $\bmod 7$. e) $2 x \equiv 3 \bmod 5 \Leftrightarrow 3 \times 2 x \equiv x \equiv 3 \times 3 \equiv 4 \bmod 5$. So $x=4+5 y$ for some $y \in \mathbb{Z}$ and
7 marks	$5(4+5 y) \equiv 4 \bmod 9 \Leftrightarrow-2 y \equiv 2 \bmod 9 \Leftrightarrow y=-1+9 z$ for some $z \in \mathbb{Z}$. So this means that $x=4+5(-1+9 z)=-1+45 z$ for some $z \in \mathbb{Z}$ and $3(-1+45 z) \equiv 1 \bmod 4 \Leftrightarrow 3(-1+z) \equiv 1 \bmod 4 \Leftrightarrow 3 z \equiv 0 \bmod 4$ $\Leftrightarrow x \equiv-1 \bmod 180$.

Bookwork: just the statement for $a \not \equiv 0$ will suffice 2 marks
Standard exer- cises 2 marks

7 marks

5 marks

4 marks
3. Fermat's Little Theorem: Let p be prime. Then $a^{p} \equiv a \bmod p$ for all $a \in \mathbb{Z}$, and $a^{p-1} \equiv 1 \bmod p$ if $a \not \equiv 0 \bmod p$.
(i) Since $a^{30} \equiv 1 \bmod 31$ for $a \not \equiv 0 \bmod 31$, we have $2^{60} \equiv 3^{150} \equiv 1$ $\bmod 31$ we have $2^{62}+3^{153} \equiv 2^{2}+3^{3} \equiv 0 \bmod 31$.
(ii) The possible orders are all the divisors of 30 , that is,

$$
1,2,3,5,6,10,15,30
$$

Of course 1 has order 1 and -1 has order 2 . We see that $2^{5} \equiv 1$ mod 31, and hence 2 has order 5 , and -2 has order 10 . Since $3^{3} \equiv-2^{2}$ and -2^{2} also has order 10 , we see that 3^{3} has order 10 and hence 3 has order 30 . Then 3^{2} has order 15 and $3^{5}=243 \equiv-5$ has order 6 , and $3^{1} 0 \equiv 25 \equiv-6$ has order 3 . So elements of the respective orders are

$$
1,-1,-6,2,-5,-2,9,3
$$

Clearly we cannot have $n \equiv 0 \bmod 7$. First suppose that $n \not \equiv$ $1 \bmod 7$. Then we need to find all $n \not \equiv 0$ and $m \geq 2$ such that $n^{m} \equiv 1 \bmod 7$. By Fermat's Little Theorem, $\operatorname{gcd}(m, 6)=2,3$ or 6 . If $m \equiv 0 \bmod 2$ then the only possibility for n is $n \equiv-1 \equiv 6 \bmod 7$, since $-1 \bmod 7$ is the only element of order 2 . If $m \equiv 0 \bmod 3$ then the two possibilities are $n \equiv 2$ and $n \equiv 4 \bmod 7$, since these are the elements of order 3 . If $m \equiv 0 \bmod 6$ then the extra two possibilities (besides those already given) are $n \equiv 3 \bmod 7$ and $n \equiv 5 \bmod 7$. So altogether the possibilities for (m, n) when $n \not \equiv 0 \bmod 7$ are
$(0 \bmod 2,-1 \bmod 7),(0 \bmod 3,2 \bmod 7),(0 \bmod 3,4 \bmod 7)$,
$(0 \bmod 6,3 \bmod 7),(0 \bmod 6,5 \bmod 7)$.

Now let $n \equiv 1 \bmod 7$. Then for any $m \geq 1$

$$
\frac{n^{m}-1}{n-1}=\sum_{i=0}^{m-1} n^{i}
$$

and $n^{i} \equiv 1 \bmod 7$ for all i. So

$$
\sum_{i=0}^{m-1} n^{i} \equiv m \bmod 7
$$

and this is divisible by 7 if and only if $m \equiv 0 \bmod 7$.

Bookwork 1 mark 2 marks

2 marks

3 marks
4. For any integer $n \in \mathbb{Z}_{+}, \phi(n)$ is the number of $k \in \mathbb{Z}_{+}$with $k \leq n$ such that $\operatorname{gcd}(k, n)=1$
If p is prime and $a \geq 1$, then for $k \leq p^{a}$, we have

$$
\operatorname{gcd}\left(k, p^{a}\right)>1 \Leftrightarrow p \mid k \Leftrightarrow k=\ell p, \quad 1 \leq \ell<p^{a-1} .
$$

So

$$
\phi\left(p^{a}\right)=p^{a}-1-\left(p^{a-1}-1\right)=p^{a-1}(p-1) .
$$

The divisors of p^{a} are p^{i} for $0 \leq i \leq a$, and

$$
\int p^{a}=\sum_{i=0}^{a} p^{i}=\frac{p^{a+1}-1}{p-1}
$$

If

$$
n=\prod_{i=1}^{m} p_{i}^{k_{i}}
$$

where the p_{i} are all distinct primes and $m_{i} \geq 1$ then

$$
\phi(n)=\prod_{i=1}^{m} p_{i}^{k_{i}-1}\left(p_{i}-1\right),
$$

and

$$
\int n=\prod \frac{p_{i}^{k_{i}+1}-1}{p_{i}-1}
$$

Unseen except on practice exam 3 marks each
$9!=2 \times 3 \times 2^{2} \times 5 \times 2 \times 3 \times 7 \times 2^{3} \times 3^{2}=2^{7} \times 3^{4} \times 5 \times 7$. So $\phi(9)=2^{6} \times 3^{3} \times 2 \times 4 \times 6=2^{1} 0 \times 3^{4}=1024 \times 81=82944$. Then

$$
\frac{9!}{3!6!} \cdot=\frac{9 \times 8 \times 7}{6}=12 \times 7=2^{2} \times 3 \times 7
$$

and

$$
\phi\left(\binom{9}{3}\right)=\phi\left(2^{2} \times 3 \times 7\right)=2 \times 2 \times 6=24 .
$$

In the expression above for $\phi(n)$ we have $p_{i}^{k_{i}-1}\left(p_{i}-1\right) \geq 2^{k_{i}}$ whenever $p_{i}>2$ and $p_{i}^{k_{i}-1}\left(p_{i}-1\right)=2^{k_{i}-1}$ if $p_{i}=2$. So altogether this gives $2^{K-1} \leq \phi(n)$. Since $P-1$ is one of the factors in $\phi(n)$ we also 3 marks

3 marks
have $\phi(n) \geq P-1$. We always have $\phi(n) \leq n$ since $\phi(n)$ is the number of elements in a certain subset of $\left\{k \in \mathbb{Z}_{+}: k \leq n\right\}$. Since $p_{i} \leq P$ for all i, we also have $n \leq P^{K}$.
For any K_{0}, if $K \leq K_{0}$ and $n \geq K_{0}^{K_{0}}$ then $n^{1 / K} \geq K_{0}$. So if n is large enough given $K_{0}, \phi(n)>K_{0}$. Hence $\lim _{n \rightarrow \infty} \phi(n)=+\infty$.

Bookwork 4 marks 2 marks	5. If $x \equiv y \bmod n_{1}$ and $x \equiv y \bmod n_{2}$ then $n_{1} \mid x-y$ and $n_{2} \mid x-y$. Since n_{1} and n_{2} are coprime, this means that $n_{1} n_{2} \mid x-y$ and hence $x \equiv y \bmod \left(n_{1} n_{2}\right)$, and hence F is injective. Since $\mathbb{Z}_{n_{1} n_{2}}$ and $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ both have $n_{1} n_{2}$ elements, F must be a bijection. Since $F(1)=(1,1)$ and F preserves multiplication, F maps the group of units G_{n} in \mathbb{Z}_{n} to the group of units in $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$, that is, to $G_{n_{1}} \times G_{n_{2}}$.
Standard exercise 4 marks	We have $\begin{gathered} F(0)=(0,0), F(1)=(1,1), F(2)=(2,2), F(3)=(0,3), F(4)=(1,4) \\ F(5)=(2,5), F(6)=(0,6), F(7)=(1,0), F(8)=(2,1), F(9)=(0,2) \\ F(10)=(1,3), F(11)=(2,4), F(12)=(0,5), F(13)=(1,6), \\ F(14)=(2,0), F(15)=(0,1), F(16)=(1,2), F(17)=(2,3), \\ F(18)=(0,4), F(19)=(1,5), F(20)=(2,6) . \end{gathered}$
Bookwork 2 marks	Korselt's condition on n is that $n=\prod_{i=1}^{m} p_{i}$ where all the p_{i} are distinct primes, and $p_{i}-1 \mid n-1$ for all i.
Standard exercise 3 marks	$1729=7 \times 247=7 \times 13 \times 19, \text { and } 1728=8 \times 216=2^{6} \times 27=2^{6} \times 3^{3}$ So 6 and $12=2^{2} \times 3$ and $18=2 \times 3^{2}$ all divide 1728 , and 1729 is a Carmichael number.
Unseen 1 marks	If $a^{n-1}=b^{n-1} \equiv 1 \bmod n$ then $\left(a b^{-1}\right)^{n-1} \equiv 1 \bmod n$. So the set of pseudoprimes is a group
Standard exercise 4 marks	As above, we have $G_{21} \cong G_{3} \times G_{7}$. Since 3 and 7 are prime, the groups G_{3} and G_{7} are cyclic of orders $2=3-1$ and $6=7-1$. So the order of any element of G_{21} is a divisor of $\operatorname{lcm}(6,2)=6$. Now $21=20=2^{2} \times 5$. For $a \in G_{21}, 21$ is a pseudoprime to base $a(\operatorname{pr} a \equiv 1)$ if and only if $a^{20} \equiv 1 \bmod 21$. Since $\operatorname{gcd}(6,20)=2$ this happens if and only if $a^{2} \equiv 1 \bmod 21$. Since $a^{2} \equiv 1 \bmod 3$ for both elements of G_{3}, and $a^{2} \equiv 1 \bmod 7$ for just two elements of G_{7}. So there are four such elements of G_{21}, and they are the elements mapped by F to $(\pm 1, \pm 1)$. In fact since $G_{21}=\{ \pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10\}$ we can also easily check that the elements are $\{ \pm 1, \pm 8\}$.

Standard exer- \mid 6.a) If $s=2 s_{1}$ is even then $s^{2}=4 s_{1}^{2} \equiv 0 \bmod 4$. If $s=2 s_{1}+1$ is
cise 4 marks
odd then

$$
s^{2}=4 s_{1}^{2}+4 s_{1}+1 \equiv 1 \bmod 4
$$

Similar properties hold for t. So $s^{2}+t^{2}$ is either $0 \bmod 4$ (of both s and t are even) or $2 \bmod 4$ (if both s and t are odd) or $1 \bmod 4$ if one of s and t is odd, and the other is even.
b) Since conjugation is multiplicative,

$$
n=(s+i t)(u+i v) \Leftrightarrow n=(s-i t)(u-i v)
$$

So $s+i t$ divides n if and only if $s-i t$ does, and

$$
s+i t\left|n \Rightarrow s^{2}+t^{2}\right| n^{2}
$$

If

$$
n_{j}=s_{j}^{2}+t_{j}^{2}=\left(s_{j}+i t_{j}\right) \overline{s_{j}+i t_{j}}
$$

then
$n_{1} n_{2}=\left(s_{1}+i t_{1}\right)\left(s_{2}+i t_{2}\right) \overline{\left(s_{1}+i t_{1}\right)\left(s_{2}+i t_{2}\right)}=\left(s_{1} s_{2}-t_{1} t_{2}\right)^{2}+\left(s_{1} t_{2}+s_{2} t_{1}\right)^{2}$.
c) Since $s+i t$ is prime in $\mathbb{Z}[i]$, we have $\operatorname{gcd}(s, t)=1$. If

$$
(s+i t)(s-i t) s^{2}+t^{2}=u v
$$

for integers u and $v \geq 2$, then neither u nor v divides $s+i t$ in $\mathbb{Z}[i]$, contradicting unique factorisation. So $s^{2}+t^{2}$ must be prime, and since $s^{2}+t^{2} \mid n^{2}$ by b), we have $s^{2}+t^{2} \mid n$.
d) If $k^{2} \equiv-1 \bmod p$ then there is $a \in \mathbb{Z}_{+}$such that $k^{2}+1=$ $(k+i)(k-i)=a p$. Then

$$
k+i=\prod_{j}=1^{n}\left(s_{j}+i t_{j}\right)
$$

where s_{j} and $t_{j} \in \mathbb{Z} \backslash\{0\}$ for $1 \leq j \leq n$, and $s_{j}+i t_{j}$ is prime in $\mathbb{Z}[i]$, and hence

$$
k-i=\prod_{j=1}^{n}\left(s_{j}-i t_{j}\right)
$$

So

$$
a p=\prod_{j=1}^{n}\left(s_{j}^{2}+t_{j}^{2}\right)
$$

By c) each $s_{j}^{2}+t_{j}^{2}$ is prime in \mathbb{Z}. Hence $p=s_{j}^{2}+t_{j}^{2}$ for some j.
We have $21 \equiv 1 \bmod 4$ but $21=3 \times 7$ and $3 \equiv 7 \bmod 4$.

Standard exercise
2 marks

standard theory Bookwork 2 marks	7. The Legendre symbol is defined by $\left(\frac{q}{p}\right)=\begin{aligned} & 1 \\ & -1 \text { otherwise }\end{aligned} \quad$ if $q \equiv a^{2} \quad \bmod p$ for some $a \in \mathbb{Z}$
Bookwork 5 marks	If $q \equiv a^{2} \bmod p$ then $q^{(p-1) / 2} \equiv a^{p-1} \equiv 1$ by Fermat's Little Theorem. Conversely if $q^{(p-1) / 2} \equiv 1$ and b is a primitive element of G_{p} and $q=b^{m}$ then $b^{m(p-1) / 2} \equiv 1$ implies that $p-1 \mid m(p-1) / 2$, that is, m must be even and hence $q \equiv\left(b^{(m-1) / 2}\right)^{2}$. Since $F\left(q_{1} q_{2}\right) \equiv\left(q_{1} q_{2}\right)^{(p-1) / 2} \equiv q_{1}^{(p-1) / 2} q_{2}^{(p-1) / 2} \equiv F\left(q_{1}\right) F\left(q_{2}\right) \bmod p$ we see that $q \mapsto F(q) \bmod p$ is a homomorphism. Since $-1 \not \equiv$ $1 \bmod p$ we see that F itself is a homomorphism.
Bookwork 3 marks	For any odd prime p, $\left(\frac{2}{p}\right)=1 \Leftrightarrow p= \pm 1 \quad \bmod 8 .$ If p and q are odd primes, then $\left(\frac{q}{p}\right) \times\left(\frac{p}{q}\right)=(-1)^{(p-1)(q-1) / 4} .$
Standard exercise 3 marks	$\left(\frac{6}{17}\right)=\left(\frac{2}{17}\right) \times\left(\frac{3}{17}\right)$ and since $17 \equiv 1 \bmod 8$ we have $\left(\frac{2}{17}\right)=1 \text { and }\left(\frac{3}{17}\right) \times\left(\frac{17}{3}\right)=(-1)^{8 \times 1}=1,$ and since $17 \equiv 2 \bmod 3$ and $3 \equiv 3 \bmod 8$, we have $\left(\frac{17}{3}\right)=\left(\frac{2}{3}\right)=-1 \text { and }\left(\frac{6}{17}\right)=-1 .$

Standard cise	exer-		
3 marks		\quad	Since both 23 and 73 are prime we have
:---			
$\qquad\left(\frac{23}{73}\right) \times\left(\frac{73}{23}\right)=(-1)^{11 \times 36}=1$.			

Then since $73=3 \times 23+4$ and $23 \equiv-1 \bmod 8$

$$
\left(\frac{73}{23}\right)=\left(\frac{4}{23}\right)=\left(\frac{2}{23}\right)^{2}=1^{2}=1 \text { and }\left(\frac{73}{23}\right)=1 .
$$

Will be exercise near end of course 4 marks

$$
\begin{gathered}
\binom{-3}{p} \times\binom{ p}{-3}=(-1)^{(-3-1) / 2 \times(p-1) / 2}=1 \\
\binom{p}{-3}=\binom{p}{3}=\begin{array}{l}
1 \text { if } p \equiv 1 \bmod 3 \\
-1 \text { if } p \equiv 2 \bmod 3
\end{array}
\end{gathered}
$$

Now suppose that there are finitely many such primes q_{i}, with $1 \leq$ $i \leq n$ and let p be any prime dividing $N^{2}+3$, where

$$
N=\prod_{i=1}^{n} q_{i} .
$$

Then $p \mid N^{2}+3$ is equivalent to $N^{2} \equiv-3 \bmod p$ and hence $p \equiv 1$ $\bmod 3$. But then $p \mid N$, which is a contradiction since $p \backslash 3$.

