Solutions to MATH342 exam May 2012

	Bookwork	1. $x \equiv y \mod n \iff n \mid (x - y).$
	2marks	
	3marks	$x_1x_2 - y_1y_2 = x_1(x_2 - y_2) + (x_1 - x_2)y_2$. So if $n \mid (x_1 - y_1)$ and $n \mid (x_2 - y_2)$ then $n \mid (x_1x_2 - y_1y_2)$. That is, if $x_1 \equiv x_2 \mod n$ and $y_1 \equiv y_2 \mod n$ then $x_1x_2 \equiv y_1y_2 \mod n$.
-	Standard home-	a) $r^2 \equiv 1 \mod 5 \iff (r-1)(r+1) \mod 5 \iff r \equiv \pm 1 \mod 5$
	work exercises	$a = 1 \mod 0 \iff (x + 1) \mod 0 \iff x - \pm 1 \mod 0.$
	2 marks	
	2 marks 2 marks	b) If $r = \pm 1 \mod 5$ or $r \equiv 0 \mod 5$ then $r^3 \equiv r \neq 2 \mod 5$. If
	2 11101185	b) If $x = \pm 1$ mod 5 of $x \equiv 0$ mod 5 then $x \equiv x \neq 2$ mod 5. If $x = 2 \mod 5$ then $x^3 \equiv 2 \mod 5$. If $x = 3 \mod 5$ then $x^3 \equiv 2$
		$x \equiv 2 \mod 5$, then $x \equiv 3 \mod 5$. If $x \equiv 5 \mod 5$ then $x \equiv 2$ and 5
	2 marks	$a)2x = 3 \mod 4 \Leftrightarrow 2x = 3 + 4n$ for some $n \in \mathbb{Z}$. This has no
	2 marks	$c_1 2x \equiv 5 \mod 4 \Leftrightarrow 2x = 5 + 4n \text{ for some } n \in \mathbb{Z}$. This has no
	2 marks	solutions d) $6x = 8 \mod 14 \implies 3x = 4 \mod 7 \implies 5 \times 2x = x = 5 \times 4 = 6$
	2 marks	a) $0x \equiv 6 \mod 14 \iff 5x \equiv 4 \mod 7 \iff 5 \times 5x \equiv x \equiv 5 \times 4 \equiv 0 \mod 7$
		$\begin{array}{c} 11001 \ i. \\ 2)2m = 2 \ mod \ 5 \ () \ 2 \ () \ 2m = m = 2 \ () \ 2 = 4 \ mod \ 5 \ C_{2} \end{array}$
		$e_{1}^{2}2x \equiv 5 \mod 5 \Leftrightarrow 5 \times 2x \equiv x \equiv 5 \times 5 \equiv 4 \mod 5.$ So
		$x = 4 + 5y$ for some $y \in \mathbb{Z}$ and $\sum_{i=1}^{n} \frac{1}{2} + \frac{1}{$
	/ marks	$5(4+5y) \equiv 4 \mod 9 \Leftrightarrow -2y \equiv 2 \mod 9 \Leftrightarrow y = -1+9z$ for some
		$z \in \mathbb{Z}$. So this means that
		$x = 4 + 5(-1 + 9z) = -1 + 45z$ for some $z \in \mathbb{Z}$ and
		$3(-1+45z) \equiv 1 \mod 4 \Leftrightarrow 3(-1+z) \equiv 1 \mod 4 \Leftrightarrow 3z \equiv 0 \mod 4$
_		$\Leftrightarrow x \equiv -1 \mod 180.$

Bookwork	2. FTA: Let $n \in \mathbb{Z}_+$ with $n \geq 2$. Then there are primes q_i for
4 marks	$1 \leq i \leq m$ and $q_i < q_{i+1}$ and $k_i \in \mathbb{Z}_+$ such that $n = \prod_{i=1}^m q_i^{k_i}$. This
	representation is unique.
3 marks	Suppose that $p_{n+1} \ge \prod_{i=1}^{n} p_i = N$. Since p_i divides N, it cannot
	divide $N + 1$, and so $N + 1$ is not divisible by p_i for any $i \leq n$. So
	$p_{n+1} = N + 1$. So in all cases, $p_{n+1} \le N + 1$.
1 mark	$\pi(x)$ is the number of (positive) prime numbers $\leq x$, for any real
	number x.
Standard exer-	The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. So
cises	$\pi(23) = \pi(28) = 9$. Since p_n is the <i>n</i> 'th prime we have $\pi(p_n) = n$.
4 marks	If $n \ge 2$ then $p_n \ge 3$ is odd and $p_{n+1} \ge p_n + 2$. So if $n \ge 2$,
	$\pi(p_n+1) = n$, but if $n = 1$, $\pi(p_1+1) = \pi(3) = 2$.
2 marks	The first five primes in the sequence $p_n^{(3,4)}$ are 3, 7, 11, 19, 23.
Unseen	Write $N = 4 \prod_{i=2}^{n} p_i^{(3,4)} + 3$. Since 3 is not divisible by $p_i^{(3,4)}$ for
	any $i \geq 2$, N is not divisible by $p_i^{(3,4)}$ for $i \geq 2$. Similarly, since the
	product is not divisible by $3, N$ is not divisible by 3 either. Clearly,
6 marks	N is odd. It cannot be the case that every prime which divides N
	is equal to 1 mod 4 because the product of numbers which are 1
	mod 4 is also 1 mod 4, and $N \equiv 3 \mod 4$. So there must be a
	prime which is 3 mod 4 which divides N and is not $p_i^{(3,4)}$ for any
	$1 \leq i \leq n$. Therefore $p_{n+1}^{(3,4)}$ must exist.
	'

Bookwork: just 3. Fermat's Little Theorem: Let p be prime. Then $a^p \equiv a \mod p$ for all $a \in \mathbb{Z}$, and $a^{p-1} \equiv 1 \mod p$ if $a \not\equiv 0 \mod p$. the statement for $a \not\equiv 0$ will suffice 2 marks (i) Since $a^{30} \equiv 1 \mod 31$ for $a \neq 0 \mod 31$, we have $2^{60} \equiv 3^{150} \equiv 1$ Standard exermod 31 we have $2^{62} + 3^{153} \equiv 2^2 + 3^3 \equiv 0 \mod 31$. cises 2 marks (ii) The possible orders are all the divisors of 30, that is, 1, 2, 3, 5, 6, 10, 15, 30. 7 marks Of course 1 has order 1 and -1 has order 2. We see that $2^5 \equiv 1$ mod 31, and hence 2 has order 5, and -2 has order 10. Since $3^3 \equiv -2^2$ and -2^2 also has order 10, we see that 3^3 has order 10 and hence 3 has order 30. Then 3^2 has order 15 and $3^5 = 243 \equiv -5$ has order 6, and $3^{1}0 \equiv 25 \equiv -6$ has order 3. So elements of the respective orders are 1, -1, -6, 2, -5, -2, 9, 3.Clearly we cannot have $n \equiv 0 \mod 7$. First suppose that $n \not\equiv d$ 1 mod 7. Then we need to find all $n \not\equiv 0$ and $m \geq 2$ such that $n^m \equiv 1 \mod 7$. By Fermat's Little Theorem, gcd(m, 6) = 2, 3 or 6. 5 marks If $m \equiv 0 \mod 2$ then the only possibility for n is $n \equiv -1 \equiv 6 \mod 7$, since $-1 \mod 7$ is the only element of order 2. If $m \equiv 0 \mod 3$ then the two possibilities are $n \equiv 2$ and $n \equiv 4 \mod 7$, since these are the elements of order 3. If $m \equiv 0 \mod 6$ then the extra two possibilities (besides those already given) are $n \equiv 3 \mod 7$ and $n \equiv 5 \mod 7$. So altogether the possibilities for (m, n) when $n \not\equiv 0 \mod 7$ are $(0 \mod 2, -1 \mod 7), (0 \mod 3, 2 \mod 7), (0 \mod 3, 4 \mod 7),$ $(0 \mod 6, 3 \mod 7), (0 \mod 6, 5 \mod 7).$ Now let $n \equiv 1 \mod 7$. Then for any $m \ge 1$ $\frac{n^m - 1}{n - 1} = \sum_{i=0}^{m-1} n^i$ 4 marks and $n^i \equiv 1 \mod 7$ for all *i*. So $\sum_{i=1}^{m-1} n^i \equiv m \mod 7$ and this is divisible by 7 if and only if $m \equiv 0 \mod 7$.

Bookwork
1 mark
1 mark
1 mark
2 mark
2 mark
2 mark
4. For any integer
$$n \in \mathbb{Z}_+$$
, $\phi(n)$ is the number of $k \in \mathbb{Z}_+$ with
 $k \leq n$ such that $gcd(k, n) = 1$
If p is prime and $a \geq 1$, then for $k \leq p^a$, we have
 $gcd(k, p^a) > 1 \Leftrightarrow p \mid k \Leftrightarrow k = \ell p, \ 1 \leq \ell < p^{a-1}.$
So
 $\phi(p^a) = p^a - 1 - (p^{a-1} - 1) = p^{a-1}(p-1).$
2 marks
If
 $p^a = \sum_{i=0}^{a} p^i = \frac{p^{a+1} - 1}{p-1}$
3 marks
If
 $n = \prod_{i=1}^{m} p_i^{k_i}$
where the p_i are all distinct primes and $m_i \geq 1$ then
 $\phi(n) = \prod_{i=1}^{m} p_i^{k_i-1}(p_i-1),$
and
 $\int n = \prod \frac{p_i^{k_i+1} - 1}{p_i - 1}.$
9!
 $2 \approx 3 \times 2^2 \times 5 \times 2 \times 3 \times 7 \times 2^3 \times 3^2 = 2^7 \times 3^4 \times 5 \times 7.$ So
 $\phi(9) = 2^6 \times 3^3 \times 2 \times 4 \leftarrow 6 = 2^{10} \times 3^4 = 1024 \times 81 = 82944.$ Then
 $\frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{6} = 12 \times 7 = 2^2 \times 3 \times 7$
and
 $\phi\left(\binom{9}{3}\right) = \phi(2^2 \times 3 \times 7) = 2 \times 2 \times 6 = 24.$
Unseen
In the expression above for $\phi(n)$ we have $p_i^{k_i-1}(p_i-1) \geq 2^{k_i}$ whenever $p_i \geq 2$ and $p_i^{k_i-1}(p_i-1) = 2^{k_i-1}$ if $p_i = 2.$ So altogether this gives $2^{K-1} \leq \phi(n)$. Since $P - 1$ is one of the factors in $\phi(n)$ is the sumber of elements in a certain subset of $\{k \in \mathbb{Z}_+ k \leq n\}$. Since $p_i \leq P$ for all i , we also have $n \leq P^K$.
For any K_0 , if $K \leq K_0$ and $n \geq K_0^K$ then $n^{1/K} \geq K_0$. So if n is large

Bookwork	5. If $x \equiv y \mod n_1$ and $x \equiv y \mod n_2$ then $n_1 \mid x - y$ and
4 marks	$n_2 \mid x-y$. Since n_1 and n_2 are coprime, this means that $n_1n_2 \mid x-y$ and hence $x \equiv y \mod (n_1n_2)$, and hence F is injective. Since $\mathbb{Z}_{n_1n_2}$
a 1	and $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ both have $n_1 n_2$ elements, F must be a bijection.
2 marks	Since $F(1) = (1, 1)$ and F preserves multiplication, F maps the
	group of units G_n in \mathbb{Z}_n to the group of units in $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$, that is,
<u>Quala 1. 1</u>	to $G_{n_1} \times G_{n_2}$.
Standard exer-	we nave
cise	$F(0) = (0 \ 0) F(1) = (1 \ 1) F(2) = (2 \ 2) F(3) = (0 \ 3) F(4) = (1 \ 4)$
4 marks	1 (0) = (0,0), 1 (1) = (1,1), 1 (2) = (2,2), 1 (0) = (0,0), 1 (1) = (1,1),
	F(5) = (2,5), F(6) = (0,6), F(7) = (1,0), F(8) = (2,1), F(9) = (0,2),
	F(10) = (1,3), F(11) = (2,4), F(12) = (0,5), F(13) = (1,6),
	F(14) = (2,0), F(15) = (0,1), F(16) = (1,2), F(17) = (2,3),
	F(18) = (0, 4), F(19) = (1, 5), F(20) = (2, 6).
Bookwork	Korselt's condition on n is that $n = \prod_{i=1}^{m} p_i$ where all the p_i are
2 marks	distinct primes, and $p_i - 1 \mid n - 1$ for all <i>i</i> .
Standard exer-	$1729 = 7 \times 247 = 7 \times 13 \times 19$, and $1728 = 8 \times 216 = 2^6 \times 27 = 2^6 \times 3^3$.
cise	So 6 and $12 = 2^2 \times 3$ and $18 = 2 \times 3^2$ all divide 1728, and 1729 is
3 marks	a Carmichael number.
Unseen	If $a^{n-1} \equiv b^{n-1} \equiv 1 \mod n$ then $(ab^{-1})^{n-1} \equiv 1 \mod n$. So the set
1 marks	of pseudoprimes is a group
Standard exer-	As above, we have $G_{21} \cong G_3 \times G_7$. Since 3 and 7 are prime, the
cise	groups G_3 and G_7 are cyclic of orders $2 = 3 - 1$ and $6 = 7 - 1$.
4 marks	So the order of any element of G_{21} is a divisor of $lcm(6,2) = 6$.
	Now $21 = 20 = 2^2 \times 5$. For $a \in G_{21}$, 21 is a pseudoprime to base
	$a \text{ (pr } a \equiv 1) \text{ if and only if } a^{20} \equiv 1 \mod 21.$ Since $gcd(6, 20) = 2$
	this happens if and only if $a^2 \equiv 1 \mod 21$. Since $a^2 \equiv 1 \mod 3$
	for both elements of G_3 , and $a^2 \equiv 1 \mod 7$ for just two elements
	of G_7 . So there are four such elements of G_{21} , and they are the
	elements mapped by F to $(\pm 1, \pm 1)$. In fact since
	$G_{21} = \{\pm 1, \pm 2, \pm 4, \pm 5, \pm 8, \pm 10\}$
	we can also easily check that the elements are $\{\pm 1, \pm 8\}$.

Standard exer- cise 4 marks	6.a) If $s = 2s_1$ is even then $s^2 = 4s_1^2 \equiv 0 \mod 4$. If $s = 2s_1 + 1$ is odd then $s^2 = 4s_1^2 + 4s_1 + 1 \equiv 1 \mod 4$.
	Similar properties hold for t. So $s^2 + t^2$ is either 0mod 4 (of both s and t are even) or 2mod 4 (if both s and t are odd) or 1mod 4 if one of s and t is odd, and the other is even.
Bookwork	b) Since conjugation is multiplicative,
3 marks	$n = (s + it)(u + iv) \iff n = (s - it)(u - iv).$
	So $s + it$ divides n if and only if $s - it$ does, and
	$s + it \mid n \Rightarrow s^2 + t^2 \mid n^2.$
3 marks	If $n_i = s_i^2 + t_i^2 = (s_i + it_i)\overline{s_i + it_i}$
	then
	$n_1n_2 = (s_1 + it_1)(s_2 + it_2)\overline{(s_1 + it_1)(s_2 + it_2)} = (s_1s_2 - t_1t_2)^2 + (s_1t_2 + s_2t_1)^2 + (s_1t_2 + s_2t_2)^2 + ($
Bookwork	c) Since $s + it$ is prime in $\mathbb{Z}[i]$, we have $gcd(s, t) = 1$. If
3 marks	$(s+it)(s-it)s^2 + t^2 = uv$
	for integers u and $v \ge 2$, then neither u nor v divides $s + it$ in $\mathbb{Z}[i]$, contradicting unique factorisation. So $s^2 + t^2$ must be prime, and since $s^2 + t^2 \mid n^2$ by b), we have $s^2 + t^2 \mid n$.
Bookwork 5 marks	d) If $k^2 \equiv -1 \mod p$ then there is $a \in \mathbb{Z}_+$ such that $k^2 + 1 = (k+i)(k-i) = ap$. Then
	$k+i = \prod_{j} = 1^{n}(s_{j} + it_{j}),$
	where s_j and $t_j \in \mathbb{Z} \setminus \{0\}$ for $1 \leq j \leq n$, and $s_j + it_j$ is prime in $\mathbb{Z}[i]$, and hence
	$k - i = \prod_{j=1}^{n} (s_j - it_j).$
	So
	$ap = \prod_{j=1} (s_j^2 + t_j^2).$
Standard exer- cise	By c) each $s_j^2 + t_j^2$ is prime in \mathbb{Z} . Hence $p = s_j^2 + t_j^2$ for some j . We have $21 \equiv 1 \mod 4$ but $21 = 3 \times 7$ and $3 \equiv 7 \mod 4$.

standard theory	7. The Legendre symbol is defined by
Bookwork 2 marks	$\left(\frac{q}{p}\right) = \begin{array}{c} 1 & \text{if } q \equiv a^2 \mod p \text{ for some } a \in \mathbb{Z} \\ -1 \text{ otherwise} \end{array}$
Bookwork 5 marks	If $q \equiv a^2 \mod p$ then $q^{(p-1)/2} \equiv a^{p-1} \equiv 1$ by Fermat's Little The- orem. Conversely if $q^{(p-1)/2} \equiv 1$ and b is a primitive element of G_p and $q = b^m$ then $b^{m(p-1)/2} \equiv 1$ implies that $p-1 \mid m(p-1)/2$, that is, m must be even and hence $q \equiv (b^{(m-1)/2})^2$. Since
	$F(q_1q_2) \equiv (q_1q_2)^{(p-1)/2} \equiv q_1^{(p-1)/2} q_2^{(p-1)/2} \equiv F(q_1)F(q_2) \mod p$
	we see that $q \mapsto F(q) \mod p$ is a homomorphism. Since $-1 \not\equiv 1 \mod p$ we see that F itself is a homomorphism.
Bookwork	For any odd prime p ,
3 marks	$\left(\frac{2}{p}\right) = 1 \Leftrightarrow p = \pm 1 \mod 8.$
	If p and q are odd primes, then
	$\left(\frac{q}{p}\right) \times \left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4}.$
Standard exer-	
cise 3 marks	$\left(\frac{6}{17}\right) = \left(\frac{2}{17}\right) \times \left(\frac{3}{17}\right)$
	and since $17 \equiv 1 \mod 8$ we have
	$\left(\frac{2}{17}\right) = 1 \text{ and } \left(\frac{3}{17}\right) \times \left(\frac{17}{3}\right) = (-1)^{8 \times 1} = 1,$
	and since $17 \equiv 2 \mod 3$ and $3 \equiv 3 \mod 8$, we have
	$\left(\frac{17}{3}\right) = \left(\frac{2}{3}\right) = -1 \text{ and } \left(\frac{6}{17}\right) = -1.$

Standard exercise (23) (73)

3 marks	$\left(\frac{23}{73}\right) \times \left(\frac{73}{23}\right) = (-1)^{11 \times 36} = 1.$
	Then since $73 = 3 \times 23 + 4$ and $23 \equiv -1 \mod 8$
	$\left(\frac{73}{23}\right) = \left(\frac{4}{23}\right) = \left(\frac{2}{23}\right)^2 = 1^2 = 1 \text{ and } \left(\frac{73}{23}\right) = 1.$
Will be exercise near end of course	$\binom{-3}{p} \times \binom{p}{-3} = (-1)^{(-3-1)/2 \times (p-1)/2} = 1$
4 marks	and $\binom{p}{-3} = \binom{p}{3} = \begin{array}{c} 1 \text{ if } p \equiv 1 \mod 3\\ -1 \text{ if } p \equiv 2 \mod 3 \end{array}$.
	Now suppose that there are finitely many such primes q_i , with $1 \le i \le n$ and let p be any prime dividing $N^2 + 3$, where
	$N = \prod_{i=1}^{n} q_i.$
	Then $p \mid N^2 + 3$ is equivalent to $N^2 \equiv -3 \mod p$ and hence $p \equiv 1 \mod 3$. But then $p \mid N$, which is a contradiction since $p \mid /3$.