Number Theory

Time allowed: Two and a half hours.

INSTRUCTIONS TO CANDIDATES: Full marks may be obtained for complete answers to five questions. The best five questions will be taken into account.

1. For x and $y \in \mathbb{Z}$, and $n \in \mathbb{Z}_{+}$define

$$
x \equiv y \bmod n
$$

in terms of division by n. Prove from this definition that

$$
\left(x_{1} \equiv y_{1} \bmod n \quad \wedge \quad x_{2} \equiv y_{2} \bmod n\right) \quad \Rightarrow \quad\left(x_{1} x_{2} \equiv y_{1} y_{2} \bmod n\right)
$$

Find all solutions of the following. In some cases there may be no solutions.
a) $x^{2} \equiv 1 \bmod 5$.
b) $x^{3} \equiv 2 \bmod 5$.
c) $2 x \equiv 3 \bmod 4$.
d) $6 x \equiv 8 \bmod 14$.
e) Solve the simultaneous equations $\left(\begin{array}{l}2 x \equiv 3 \\ 5 x \equiv 4 \\ \bmod 5 \\ 3 x \equiv 1\end{array} \bmod 9\right)$.
2. State the Fundamental Theorem of Arithmetic. Let p_{n} be an enumeration of all the positive primes, with $p_{1}=2$ and $p_{n}<p_{n+1}$ for all n. Show that p_{n} exists for all $n \in \mathbb{Z}_{+}$and that

$$
p_{n+1} \leq \prod_{i=1}^{n} p_{i}+1
$$

Define the prime number counting function $\pi(x)$, and write down, with any necessary explanations, the values

$$
\pi(23), \quad \pi(28), \quad \pi\left(p_{n}\right), \quad \pi\left(p_{n}+1\right)
$$

Now let $p_{n}^{(3,4)}$ be an enumeration of all the positive primes which are $3 \bmod 4$ with $p_{n}^{(3,4)}<p_{n+1}^{(3,4)}$. Write down $p_{n}^{(3,4)}$ for $n \leq 5$. Show that at least one of the primes dividing

$$
4 \prod_{i=2}^{n} p_{i}^{(3,4)}+3
$$

must be equal to $3 \bmod 4$. Deduce that $p_{n+1}^{(3,4)}$ exists for all $n \in \mathbb{Z}_{+}$, that is, that there are infinitely many primes which are $3 \bmod 4$.
[20 marks]
3. State Fermat's Little Theorem.
(i) Use it to prove that $2^{62}+3^{153}$ is divisible by 31 .
(ii) Find all the possible orders of elements of the group of units G_{31}. Give an example of an element of each possible order.

Find all values of $m \in \mathbb{Z}_{+}$and $n \in \mathbb{Z}_{+}$with $n \geq 2$ such that 7 divides

$$
\frac{n^{m}-1}{n-1} .
$$

Hint Consider separately the cases $n \not \equiv 1 \bmod 7$ and $n \equiv 1 \bmod 7$. Think about the possible orders of integers mod 7 .
4. Define Euler's ϕ function. Prove that if p is a positive prime and $a \in \mathbb{Z}_{+}$ then

$$
\phi\left(p^{a}\right)=p^{a-1}(p-1) .
$$

Also compute the sum $\int p^{a}$ (using Euler's notation) of the divisors of p^{a}. Now write down the formulas for $\phi(n)$ and $\int n$, for any $n \in \mathbb{Z}_{+}$, with $n \geq 2$, in terms of the prime decomposition of n, where

$$
n=\prod_{i=1}^{m} p_{i}^{k_{i}}
$$

for distinct primes p_{i} and integers $k_{i} \geq 1$.
Compute $\phi(9!)$ and $\phi\left(\binom{9}{3}\right)$, where $\binom{9}{3}=\frac{9!}{3!6!}$.
For p_{i} and k_{i} as above, let

$$
K=\sum_{i=1}^{m} k_{i}
$$

and

$$
P=\operatorname{Max}\left\{p_{i}: 1 \leq i \leq m\right\} .
$$

Show that

$$
\operatorname{Max}\left(2^{K-1}, P-1\right) \leq \phi(n) \leq n \leq P^{K}
$$

Deduce that

$$
\lim _{n \rightarrow \infty} \phi(n)=+\infty .
$$

5. Let $n_{1} \geq 2$ and $n_{2} \geq 2$ be coprime integers. Show that the function

$$
F: \mathbb{Z}_{n_{1} n_{2}} \rightarrow \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} ; F\left(x \bmod n_{1} n_{2}\right)=\left(x \bmod n_{1}, x \bmod n_{2}\right)
$$

is injective. Use this to show that F is a bijection.
Prove that F maps the group G_{n} of units mod n to the product $G_{n_{1}} \times G_{n_{2}}$ of the groups of units $\bmod n_{1}$ and $\bmod n_{2}$.
Construct F when $n_{1}=3$ and $n_{2}=7$.

Recall that $n \in \mathbb{Z}_{+}$is a pseudoprime to base a if $a^{n-1} \equiv 1 \bmod n$, and n is a Carmichael number if n is composite and is a pseudoprime to base a for all $a \in G_{n}$.
Give Korselt's equivalent definition of a Carmichael number. Use it to verify that 1729 is a Carmichael number.

Now let n be any integer ≥ 2. Show that

$$
\left\{a: a^{n-1} \equiv 1 \quad \bmod n\right\}
$$

is a subgroup of G_{n}.
Now let $n=21$. Identify all $a \bmod 21$ such that 21 is a pseudoprime to base a.
6. In this question let $\mathbb{Z}[i]$ be the ring of Gaussian integers, that is

$$
\mathbb{Z}[i]=\{s+i t: s, t \in \mathbb{Z}\}
$$

a) Show that for any integer n, if $n=s^{2}+t^{2}$ for $s, t \in \mathbb{Z}$ then $n \not \equiv 3 \bmod 4$.
b) Show that if $n, s, t \in \mathbb{Z}$ and $s+i t$ divides n, then $s-i t$ divides n and $s^{2}+t^{2}$ divides n^{2} in \mathbb{Z}. Show also, using the fact that complex conjugation is multiplicative or otherwise, that if $n_{1} \in \mathbb{Z}_{+}$and $n_{2} \in \mathbb{Z}_{+}$are both the sums of the squares of two integers, then the same is true for $n_{1} n_{2}$.
c) Using the fact that $\mathbb{Z}[i]$ is a unique factorisation domain, show that if s and t are both non-zero integers and $s+i t$ is prime in $\mathbb{Z}[i]$, then $s^{2}+t^{2}$ is prime in \mathbb{Z}. Deduce that if $s+i t$ divides n in $\mathbb{Z}[i]$ then $s^{2}+t^{2}$ divides n in \mathbb{Z}.
d) Let $p \in \mathbb{Z}_{+}$be prime in \mathbb{Z} and let $p \equiv 1 \bmod 4$. Using the fact that -1 is a quadratic residue $\bmod p$, show that $a p$ is a sum of two integer squares for some $a \in \mathbb{Z}_{+}$. Use unique factorisation of $\mathbb{Z}[i]$ and \mathbb{Z} to show that p is also the sum of two integer squares. Give an example to show that if $n \equiv 1 \bmod 4$, then it need not be a sum of two square integers if one of the primes dividing n is equal to $3 \bmod 4$.
7. Define the Legendre symbol

$$
\left(\frac{q}{p}\right)
$$

for any positive prime p and any integer q coprime to p. Show that if p is any odd prime then

$$
\left(\frac{q}{p}\right) \equiv q^{(p-1) / 2} \bmod p
$$

stating any theory that you use. Remember that, since p is prime, G_{p} contains a primitive element. Deduce that

$$
F: q \bmod p \mapsto\left(\frac{q}{p}\right): G_{p} \rightarrow\{ \pm 1\}
$$

is a group homomorphism. State Gauss' Law of quadratic reciprocity for $\left(\frac{q}{p}\right)$ for any distinct positive primes q and p, including the case $q=2$. Compute

$$
\left(\frac{6}{17}\right) \quad \text { and } \quad\left(\frac{23}{73}\right)
$$

Show that if p is any odd prime,

$$
\left(\frac{-3}{p}\right)=1 \Leftrightarrow p \equiv 1 \quad \bmod 3 .
$$

Deduce that there are infinitely many primes that are $1 \bmod 3$.
Hint. Suppose that there are finitely many such primes q_{i}, with $1 \leq i \leq n$ and let p be any prime dividing $N^{2}+3$, where

$$
N=\prod_{i=1}^{n} q_{i} .
$$

