PAPER CODE NO. MATH 342

MAY2012 EXAMINATIONS

Number Theory

TIME ALLOWED: Two and a half hours.

INSTRUCTIONS TO CANDIDATES: Full marks may be obtained for complete answers to five questions. The best five questions will be taken into account.

Paper Code MATH 342

Page 1 of 7

CONTINUED

1. For x and $y \in \mathbb{Z}$, and $n \in \mathbb{Z}_+$ define

$$x \equiv y \bmod n$$

in terms of division by n. Prove from this definition that

 $(x_1 \equiv y_1 \mod n \land x_2 \equiv y_2 \mod n) \Rightarrow (x_1 x_2 \equiv y_1 y_2 \mod n).$

Find all solutions of the following. In some cases there may be no solutions.

- a) $x^2 \equiv 1 \mod 5$.
- b) $x^3 \equiv 2 \mod 5$.
- c) $2x \equiv 3 \mod 4$.
- d) $6x \equiv 8 \mod 14$.

e) Solve the simultaneous equations
$$\begin{pmatrix} 2x \equiv 3 \mod 5\\ 5x \equiv 4 \mod 9\\ 3x \equiv 1 \mod 4 \end{pmatrix}$$
.

[20 marks]

2. State the Fundamental Theorem of Arithmetic. Let p_n be an enumeration of all the positive primes, with $p_1 = 2$ and $p_n < p_{n+1}$ for all n. Show that p_n exists for all $n \in \mathbb{Z}_+$ and that

$$p_{n+1} \le \prod_{i=1}^n p_i + 1.$$

Define the prime number counting function $\pi(x)$, and write down, with any necessary explanations, the values

$$\pi(23), \ \pi(28), \ \pi(p_n), \ \pi(p_n+1).$$

Now let $p_n^{(3,4)}$ be an enumeration of all the positive primes which are 3 mod 4 with $p_n^{(3,4)} < p_{n+1}^{(3,4)}$. Write down $p_n^{(3,4)}$ for $n \leq 5$. Show that at least one of the primes dividing

$$4\prod_{i=2}^{n} p_i^{(3,4)} + 3,$$

must be equal to 3 mod 4. Deduce that $p_{n+1}^{(3,4)}$ exists for all $n \in \mathbb{Z}_+$, that is, that there are infinitely many primes which are 3 mod 4.

[20 marks]

- **3.** State Fermat's Little Theorem.
- (i) Use it to prove that $2^{62} + 3^{153}$ is divisible by 31.
- (ii) Find all the possible orders of elements of the group of units G_{31} . Give an example of an element of each possible order.

Find all values of $m \in \mathbb{Z}_+$ and $n \in \mathbb{Z}_+$ with $n \ge 2$ such that 7 divides

$$\frac{n^m - 1}{n - 1}.$$

Hint Consider separately the cases $n \not\equiv 1 \mod 7$ and $n \equiv 1 \mod 7$. Think about the possible orders of integers mod 7.

[20 marks]

Paper Code MATH 342 Page 3 of 7

CONTINUED

4. Define Euler's ϕ function. Prove that if p is a positive prime and $a \in \mathbb{Z}_+$ then

$$\phi(p^a) = p^{a-1}(p-1).$$

Also compute the sum $\int p^a$ (using Euler's notation) of the divisors of p^a . Now write down the formulas for $\phi(n)$ and $\int n$, for any $n \in \mathbb{Z}_+$, with $n \ge 2$, in terms of the prime decomposition of n, where

$$n = \prod_{i=1}^m p_i^{k_i}$$

for distinct primes p_i and integers $k_i \ge 1$. Compute $\phi(9!)$ and $\phi\left(\begin{pmatrix}9\\3\end{pmatrix}\right)$, where $\begin{pmatrix}9\\3\end{pmatrix} = \frac{9!}{3!6!}$.

For p_i and k_i as above, let

$$K = \sum_{i=1}^{m} k_i$$

and

$$P = \operatorname{Max}\{p_i : 1 \le i \le m\}.$$

Show that

$$\operatorname{Max}(2^{K-1}, P-1) \le \phi(n) \le n \le P^K.$$

Deduce that

$$\lim_{n \to \infty} \phi(n) = +\infty.$$

[20 marks]

5. Let $n_1 \ge 2$ and $n_2 \ge 2$ be coprime integers. Show that the function

$$F: \mathbb{Z}_{n_1n_2} \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}; \ F(x \mod n_1n_2) = (x \mod n_1, \ x \mod n_2)$$

is injective. Use this to show that F is a bijection.

Prove that F maps the group G_n of units mod n to the product $G_{n_1} \times G_{n_2}$ of the groups of units mod n_1 and mod n_2 .

Construct F when $n_1 = 3$ and $n_2 = 7$.

Recall that $n \in \mathbb{Z}_+$ is a *pseudoprime to base* a if $a^{n-1} \equiv 1 \mod n$, and n is a *Carmichael number* if n is composite and is a pseudoprime to base a for all $a \in G_n$.

Give Korselt's equivalent definition of a Carmichael number. Use it to verify that 1729 is a Carmichael number.

Now let n be any integer ≥ 2 . Show that

$$\{a: a^{n-1} \equiv 1 \mod n\}$$

is a subgroup of G_n .

Now let n = 21. Identify all $a \mod 21$ such that 21 is a pseudoprime to base a.

[20 marks]

6. In this question let $\mathbb{Z}[i]$ be the ring of Gaussian integers, that is

$$\mathbb{Z}[i] = \{s + it : s, t \in \mathbb{Z}\}$$

- a) Show that for any integer n, if $n = s^2 + t^2$ for $s, t \in \mathbb{Z}$ then $n \not\equiv 3 \mod 4$.
- b) Show that if $n, s, t \in \mathbb{Z}$ and s + it divides n, then s it divides n and $s^2 + t^2$ divides n^2 in \mathbb{Z} . Show also, using the fact that complex conjugation is multiplicative or otherwise, that if $n_1 \in \mathbb{Z}_+$ and $n_2 \in \mathbb{Z}_+$ are both the sums of the squares of two integers, then the same is true for n_1n_2 .
- c) Using the fact that Z[i] is a unique factorisation domain, show that if s and t are both non-zero integers and s + it is prime in Z[i], then s² + t² is prime in Z. Deduce that if s + it divides n in Z[i] then s² + t² divides n in Z.
- d) Let $p \in \mathbb{Z}_+$ be prime in \mathbb{Z} and let $p \equiv 1 \mod 4$. Using the fact that -1 is a quadratic residue mod p, show that ap is a sum of two integer squares for some $a \in \mathbb{Z}_+$. Use unique factorisation of $\mathbb{Z}[i]$ and \mathbb{Z} to show that p is also the sum of two integer squares. Give an example to show that if $n \equiv 1 \mod 4$, then it need not be a sum of two square integers if one of the primes dividing n is equal to 3 mod 4.

[20 marks]

7. Define the Legendre symbol

$\left(\frac{q}{p}\right)$

for any positive prime p and any integer q coprime to p. Show that if p is any odd prime then

$$\left(\frac{q}{p}\right) \equiv q^{(p-1)/2} \bmod p,$$

stating any theory that you use. Remember that, since p is prime, G_p contains a primitive element. Deduce that

$$F: q \mod p \mapsto \left(\frac{q}{p}\right): G_p \to \{\pm 1\}$$

is a group homomorphism. State Gauss' Law of quadratic reciprocity for $\left(\frac{q}{p}\right)$ for any distinct positive primes q and p, including the case q = 2. Compute

$$\left(\frac{6}{17}\right)$$
 and $\left(\frac{23}{73}\right)$.

Show that if p is any odd prime,

$$\left(\frac{-3}{p}\right) = 1 \Leftrightarrow p \equiv 1 \mod 3.$$

Deduce that there are infinitely many primes that are 1 mod 3.

Hint. Suppose that there are finitely many such primes q_i , with $1 \le i \le n$ and let p be any prime dividing $N^2 + 3$, where

$$N = \prod_{i=1}^{n} q_i$$

[20 marks]

END