
• The properties of the real numbers are fundamental to the development of calcu-
lus.

• Yet, to a very large extent, the key properties of the real numbers were not recog-
nised until late in the nineteenth century.

• Examining properties of the real numbers led people to examine the nature of
numbers: real, complex, rational and integer.

• Finally, this led to the development of the logical foundations of mathematics, a
project which extended into the twentieth century.

• One of the most famous proofs in all mathematics is the proof, found in Euclid,
that
√
2 is irrational.

• This provides one of the first examples of a real number which is not rational,
that is, not the quotient of one integer by another.

• Legend has it that this proof was found by the Pythagoreans, and that the discov-
ery of non-rational numbers so disrupted the presumed order of things that the
discoverer was thrown into the sea.

• How do we think of real numbers? A common non-expert description is as
“points on a line”.

• We probably think of the real line as having no break in it .

• This, when fully formulated, is, in fact, the property that distinguishes the real
numbers from the integers and rational numbers.

The Greek’s view of real numbers

• Key properties of the real numbers are identified in Euclid – but in more recent
times, the importance was not recognised until the nineteenth cemtury.

• These are nowadays attributed to the Greek mathematician Eudoxus.

• In Euclid, a positive real number is interpreted as a ratio of two lengths.

• If a/b and c/d are two positive real numbers (ratios of lengths a and b, and of c
and d respectively) then it is possible to decide which of these is “less than” the
other.

• We say that a/b ≤ c/d if and only if ma < nb whenever mc < nd for positive
integers m and n.

• This is a complete and correct definition of order on positive real numbers.

Theories of the real numbers were presented by:

• William Hamilton,in two papers read to the Irish Academy in 1833 and 1835,
but he did not complete the work;
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• Weierstrass,in lectures in Berlin in 1859, but he disowned a publication in 1872
which purported to present this theory;

• Méray in 1869;

• Heine in 1870;

• Dedekind, published in 1872, but based on earlier ideas;

• Cantor, published in 1883.

• The best known theories nowadays are those of Dedekind and Cantor.

• Both theories – and indeed any theory – describes the real numbers in terms of
the rationals.

• Cantor’s description uses equivalent sequences of rational numbers, of the type
known nowadays as Cauchy sequences

• Dedekind’s description uses Dedekind cuts

A Dedekind cut A is a nonempty set of rational numbers with the following prop-
erties.

• There is a rational number x such that x 6∈ A.

• If y ∈ A and z < y is rational, then z ∈ A.

• A has no maximal element.

• The third property was actually left out of Dedekind’s description. Some such
property is needed. If x is rational we should decide whether {y ∈ Q : y ≤ x}
is a Dedekind cut or whether {y ∈ Q : y < x} is a Dedekind cut, but we should
not allow both.

• For example,
{x ∈ Q : x < 0 or x2 < 2}

is a Dedekind cut —- which we call
√
2.

• A real number is then a Dedekind cut.

• Defining arithmetic and order of real numbers is straightforward, in terms of the
arithmetic and order on rational numbers.

• For example, if A and B are real numbers, then A+B is the Dedekind cut

{y1 + y2 : y1 ∈ A, y2 ∈ B}.

It is easy to verify that A+B satisfies the three properties required of a Dedekind
cut.

• We have A < B if and only if A is contained in B and A 6= B
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• Hilbert (1862-1943) gave a list of the axioms of the real numbers, regarding
addition, multiplication and order. The list can be found in Kline, pp 990-991.

• But the most important property of real numbers is completeness:

• If An is a Dedekind cut for every integer n ≥ 1 and An ⊂ An+1 and there is a
rational number x which is not in An for any n, then ∪n≥1An is a Dedekind cut.

• The Completeness Axiom is often formulated as:

if an is an increasing (decreasing) sequence of real numbers which is bounded
above (below), then limn→∞ an exists (as a real number).

How do we know that the rationals exist?
Various people attempted to define and identify and prove properties of the rational

numbers:

• Martin Ohm (1792-1872)

• Karl Weierstrass (1815-1897)

• Giuseppe Peano (1858-1932)

• Weierstrass used the description that is used in formal studies today

• The rationals are pairs of integers [a, b] where b 6= 0 and where [a, b] = [c, d] if
and only if ad− bc = 0.

• Also we identify [a, 1] with the integer a.

• We define
[a1, b1] + [a2, b2] = [a1b2 + a2b1, b1b2],

and
[a1, b1] · [a2, b2] = [a1a2, b1b2]

• The usual rules of arithmetic: associativity, commutativity, distributivity, can be
proved from the corresponding rules for the integers, but

What are the integers

• Dedekind published a work called “Was sind die Zahlen”.It was not much read.

• Kronecker said “God made the integers. All else is the work of man”

• The best known axiomatisation of the natural numbers is that of Peano.

• The natural numbers are the positive integers.

• Some people include zero but Peano did not
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Peano’s axioms

1. 1 is a natural number

2. Every natural number a has a successor a+ 1

3. 1 is not a successor

4. If a+ 1 = b+ 1 then a = b

5. If a set S of natural numbers contains 1 and a ∈ S ⇒ a + 1 ∈ S then S = N,
the set of all natural numbers.

The fifth axiom is what is needed to carry out induction

Addition of integers

• Addition can be defined in terms of successor.

• Addition of a and 1 is just a+ 1.

• Then if a+ b has been defined we define

a+ (b+ 1) = (a+ b) + 1,

that is, the addition of a and the successor of b is defined to be the successor of
a+ b.

• Peano’s fifth axiom then gives that addition of a and b is defined for any a, b ∈ N.

Associativity of addition

• Also we can prove by induction on c ∈ N that

a+ (b+ c) = (a+ b) + c

for all a, b, c ∈ N

• By definition this is true for c = 1.

• Suppose it is true for c.

• Then

a+ (b+ (c+ 1)) = a+ ((b+ c) + 1) = (a+ (b+ c)) + 1

= ((a+ b) + c) + 1 = (a+ b) + (c+ 1)

as required.

But
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• How do we know the natural numbers exist?

• We don’t of course.We hypothetize

• But can we build up the natural numbers from something simpler?

• Peano’s axioms make it clear that the natural numbers are built up from the
natural number1

• Or one can use 0 - as is more usually done.

• The approach which developed in the early twentieth century is to identify

– 0 with the empty set ∅,
– 1 with the set containing the empty set {∅}
– if the natural numbera is a set then a+ 1 is the set a ∪ {a}.
– Hence every natural number is a set.

• The properties of the natural numbers therefore depend on the language and
axioms of set theory

Set theory

• Cantor had a big role in introducing set theory into mathematics.

• The axiomatization of set theory – and hence of mathematics –was carried out
by Bertrand Russell (1872 - 1970 ) and Alfred North Whitehead (1861-1947)

• Bertrand Russell published his “Principles of Mathematics” in 1903 and together
they published “:Principia Mathematica” in 1910-13

• Russell was one of the great figures of the twentieth century: mathematician,
philosopher, pacifist in the first world war, educationalist, writer (Nobel prizewin-
ner), founding member of CND.

• Perhaps the most striking example of the need for the Axiomatization of set
theory is

Russell’s paradox

• Let
A = {x : x is a set, x 6∈ x}

• Is A ∈ A?

• If so then by the definition of A, A 6∈ A, and we have a contradiction.

• If A 6∈ A then again by the definition of A, we have A ∈ A which again gives a
contradiction.

• So what is wrong?
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