
• “Calculus” is the word used to describe all mathematics involving differentiation
and integration.

• “Analysis is used to describe all mathematics related to Calculus.

• Over the last two or three centuries, this has come to include the concepts of
number and continuity.

• The topic this week is the early development of calculus, up to the work of
Newton and Leibniz and others in the seventeenth century.

• In the analysis segment in April, we shall consider different areas of Analysis.

• Burt it would of course be possible to divide the subject area in other ways, e.g.
to look at different individuals.

Kline lists four main areas which led to the introduction of calculus:

• formulae for distance, given speed or acceleration;

• tangents of curves;

• finding maxima and minima;

• finding lengths (and areas and volumes).

The Greeks

• Calculations areas and volumes (and lengths) was something that the Greeks
developed to a fine art using the method of exhaustion.

• Many of these techniques are attributed to Archimides (287-212BC)

• Here is a depiction of Archimedes from nearly two thousand years later (16th
century)
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Archimedes

• He was born in Syracuse in Sicily, but educated in Alexandria, and spent most
of his life in Syracuse.

• According to Kline, he is recognised as “the greatest mathematician in antiq-
uity”.

• His inventions are legendary:

– the Archimedean screw ( a pump);

– a compound pulley to launch a ship;

– testing the debasement of a crown of gold.

• He wrote a number of texts.

• – Some of these have survived, one was only discovered in 1906 (in Alexan-
dria);

– some are lost;

– some have survived only in translation;
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– Some of the texts, notably “On the Sphere and the Cylinder” and “On
Conoids and Spheroids”, illustrate the method of exhaustion.

An example

• Here is an example of the method of exhaustion:

• the area of a circle is proportional to the square of its radius —

• that is, there is a constant π such that the area of a circle of radius r is πr2, for
any r.

How is this done?
To start with, we know the area of any triangle.

b

a

The area is 1
2ab. So if we multiply all lengths by λ, the area is multiplied by λ2.

Now take a circle of radius r. The inscribed square has side length
√
2r and area

2r2. The exscribed square has side length 2r and area 4r2.

So the area of a circle of radius r must be between 2r2 and 4r2 Now inscribe the
regular octogon by adding an isosceles triangle on each side of the inscribed square.
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What is the area of the octogon? 2
√
2r2. Clearly a 16-gon is better ..
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and a 32-gon even better..

• Now we return to the case of the octogon.

• Let A1(r) be the area of the inscribed square and let A2(r) be the area of the
inscribed octogon. (Of course A1(r) = 2r2 and A2(r) = 2

√
2r2.)

• then A2(r)− A1(r) is the area of the four triangles that are added to the square
and shown in blue.

• But the circle is completely contained in the union of the yellow square and the
four rectangles which are the union of the blue and red regions.

• Each blue and red rectangle is double the area of the red triangle within it.

• So the area of the circle is between A2(r) and A1(r) + 2(A2(r) − A1(r)) =
A2(r) + (A2(r)−A1(r)).

• Similarly we can inscribe a 2n-gon in the circle for all n. We inscribe a 2n+1-gon
by adding an isosceles triangle to each of the sides of a 2n-gon.

• Let An−1(r) be the area of the 2n-gon and An(r) the area of the 2n-gon.

• An−1(r) < An(r).

• Adding rectangles containing the isosceles triangles as we did in the case of the
octogon, the area of the circle is betweenAn(r) andAn(r)+(An(r)−An−1(r)).

If A(r) is the area of the circle

An(r) ≤ A(r) ≤ An(r) + (An(r)−An−1(r)).
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But An(r) = An(1)r
2 and An−1(r) = An−1(1)r

2. (The ratio of the areas of the
2n-gon inscribed in a circle of radius r to that inscribed in a circle of radius 1 is r2.)So

An(1)r
2 ≤ A(r) ≤ An(1)r

2 + r2(An(1)−An−1(1))

and
An(1) ≤ A(1) ≤ An(1) + (An(1)−An−1(1)).

So

r2
An(1)

An(1) + (An(1)−An−1(1))
≤ A(r)

A(1)
≤ r2An(1) + (An(1)−An−1(1))

An(1)

and

r2
1

1 + An(1)−An−1(1)
An(1)

≤ A(r)

A(1)
≤ r2

(
1 + An(1)−An−1(1)

An(1)

)
.

Since 2 ≤ An(1) ≤ 4,

r2
1

1 + An(1)−An−1(1)
2

≤ A(r)

A(1)
≤ r2

(
1 + An(1)−An−1(1)

4

)
.

Since

A(1) > An(1) = A1(1) + (A2(1)−A1(1)) + · · ·+ (An(1)−An−1(1))

for any integer k there can only be finitely many n such thatAn(1)−An−1(1) ≥ 1
k .

So for any integer k we can find n such that An(1)− An−1(1) <
1
k and hence, since

An(1) > 2

r2
1

1 + 1
2k

= r2
(
1− 1

2k + 1

)
≤ A(r)

A(1)
≤ r2

(
1 + 1

2k

)
.

So
A(r)

A(1)
= r2.

This makes use of Archimedes’ Axiom: If

0 ≤ x < 1

n

for any positive integer n, then
x = 0.
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