What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{l}\text { (1) } x+2 y=1 \\ \text { (2) }-x+y=2\end{array}\right.$

What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{l}\text { (1) } x+2 y=1 \\ \text { (2) }-x+y=2\end{array}\right.$

$$
\text { (1) }+(2)
$$

$$
3 y=3
$$

What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{l}\text { (1) } x+2 y=1 \\ \text { (2) }-x+y=2\end{array}\right.$

$$
\text { (1) }+ \text { (2) }
$$

$$
3 y=3 \quad \Rightarrow \quad y=1
$$

What is Linear Algebra?

Solve the system of linear equations

$$
\left\{\begin{array}{ccc}
\text { (1) } x+2 y=1 & (1)+(2) & 3 y=3 \\
\text { (2) }-x+y=2 & \text { substitute in (2) }-x+1=2
\end{array} \Rightarrow y=1\right.
$$

What is Linear Algebra?

Solve the system of linear equations

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\text { (1) } x+2 y=1 & \text { (1) }+(2)
\end{array} \quad 3 y=3 \quad \Rightarrow \quad y=1\right. \\
& \text { (2) }-x+y=2 \text { substitute in (2) }-x+1=2 \Rightarrow x=-1
\end{aligned}
$$

What is Linear Algebra?

Solve the system of linear equations

$$
\text { Solution }(x, y)=(1,-1)
$$

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\text { (1) } x+2 y=1 & \text { (1) }+(2)
\end{array} \quad 3 y=3 \quad \Rightarrow \quad y=1\right. \\
& \text { (2) }-x+y=2 \text { substitute in (2) }-x+1=2 \Rightarrow x=-1
\end{aligned}
$$

What is Linear Algebra?

Solve the system of linear equations

$$
\left\{\begin{array}{ccccc}
(1) & x+2 y=1 & (1)+(2) & 3 y=3 & \Rightarrow y=1 \\
(2)-x+y= & =2 & \text { substitute in (2) } & -x+1=2 & \Rightarrow x=-1
\end{array}\right.
$$

$$
\text { Solution }(x, y)=(1,-1)
$$

Why exactly one solution?

What is Linear Algebra?

Solve the system of linear equations

$$
\text { Solution }(x, y)=(1,-1)
$$

Why exactly one solution? Obvious from a geometric point of view:

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\text { (1) } x+2 y=1 & \text { (1) }+(2) & 3 y=3 \quad \Rightarrow y=1
\end{array}\right. \\
& \text { (2) }-x+y=2 \text { substitute in (2) }-x+1=2 \Rightarrow x=-1
\end{aligned}
$$

What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{ccccc}\text { (1) } x+2 y= & 1 & (1)+(2) & 3 y=3 & \Rightarrow \quad y=1 \\ \text { (2) }-x+y= & \text { substitute in (2) } & -x+1=2 & \Rightarrow \quad x=-1\end{array}\right.$
Solution $(x, y)=(1,-1)$
Why exactly one solution? Obvious from a geometric point of view:

What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{ccccc}\text { (1) } x+2 y= & 1 & (1)+(2) & 3 y=3 & \Rightarrow \quad y=1 \\ \text { (2) }-x+y= & 2 & \text { substitute in (2) } & -x+1=2 & \Rightarrow \quad x=-1\end{array}\right.$
Solution $(x, y)=(1,-1)$
Why exactly one solution? Obvious from a geometric point of view:

What is Linear Algebra?

Solve the system of linear equations
$\left\{\begin{array}{ccccc}\text { (1) } x+2 y= & 1 & (1)+(2) & 3 y=3 & \Rightarrow \quad y=1 \\ \text { (2) }-x+y= & 2 & \text { substitute in (2) } & -x+1=2 & \Rightarrow \quad x=-1\end{array}\right.$
Solution $(x, y)=(1,-1)$
Why exactly one solution? Obvious from a geometric point of view:

What is Linear Algebra?

Solve the system of linear equations

$$
\left\{\begin{array}{ccccc}
\text { (1) } x+2 y=1 & (1)+(2) & 3 y=3 & \Rightarrow y=1 \\
\text { (2) }-x+y=2 & \text { substitute in (2) }-x+1=2 & \Rightarrow x=-1
\end{array}\right.
$$

$$
\text { Solution }(x, y)=(1,-1)
$$

Why exactly one solution? Obvious from a geometric point of view:

What is Linear Algebra?

What is Linear Algebra?

Linear Algebra develops methods to solve systems of linear equations and tools to analyse such systems of linear equations and their solutions.

What is Linear Algebra?

What is Linear Algebra?

Linear Algebra develops methods to solve systems of linear equations and tools to analyse such systems of linear equations and their solutions.

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

What is Linear Algebra?

What is Linear Algebra?

Linear Algebra develops methods to solve systems of linear equations and tools to analyse such systems of linear equations and their solutions.

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

What is Linear Algebra good for?

Linear Algebra provides a theoretical framework in which to attack these problems.

What is Linear Algebra?

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

What is Linear Algebra?

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

Example: Input-Output model for U.S. economy in 1958

What is Linear Algebra?

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

Example: Input-Output model for U.S. economy in 1958
(W. Leontief, Nobel Prize in Economic Sciences, 1973)

What is Linear Algebra?

Systems of linear equations pop up in problems of biology, economics, engineering, chemistry, physics, ..., and in other parts of mathematics.

Example: Input-Output model for U.S. economy in 1958

(W. Leontief, Nobel Prize in Economic Sciences, 1973)

	$x_{i}:$ coefficient of x_{i} in jth row: constant in jth row:
production level in economy sector i part of production that sector j needs from sector i consumers' demand of products of sector i	
$x_{1}=0.1588 x_{1}+0.0064 x_{2}+0.0025 x_{3}+0.0304 x_{4}+0.0014 x_{5}+0.0083 x_{6}+0.1594 x_{7}+74,000$	
$x_{2}=$	$0.0057 x_{1}+0.2645 x_{2}+0.0436 x_{3}+0.0099 x_{4}+0.0083 x_{5}+0.0201 x_{6}+0.3413 x_{7}+56,000$
$x_{3}=$	$0.0264 x_{1}+0.1506 x_{2}+0.3557 x_{3}+0.0139 x_{4}+0.0142 x_{5}+0.0070 x_{6}+0.0236 x_{7}+10,500$
$x_{4}=$	$0.3299 x_{1}+0.0565 x_{2}+0.0495 x_{3}+0.3636 x_{4}+0.0204 x_{5}+0.0483 x_{6}+0.0649 x_{7}+25,000$
$x_{5}=$	$0.0089 x_{1}+0.0081 x_{2}+0.0333 x_{3}+0.0295 x_{4}+0.3412 x_{5}+0.0237 x_{6}+0.0020 x_{7}+17,500$
$x_{6}=$	$0.1190 x_{1}+0.0901 x_{2}+0.0996 x_{3}+0.1260 x_{4}+0.1722 x_{5}+0.2368 x_{6}+0.3369 x_{7}+196,000$
$x_{7}=$	$0.0063 x_{1}+0.0126 x_{2}+0.0196 x_{3}+0.0098 x_{4}+0.0064 x_{5}+0.0132 x_{6}+0.0012 x_{7}+5,000$

sector 1: nonmetal household and personal products
sector 2: final metal products (cars etc.)
sector 3: basic metal products and mining
sector 4: basic nonmetal products and agriculture
sector 5: energy
sector 6: services
sector 7: entertainment and miscellaneous products

