Chapter 6

Series

Adding up (infinitely many) different things: e.g. Maclaurin series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Sometimes this makes sense (the series converges): sometimes it doesn't (the series diverges).

6.1 Convergence and Divergence (7.6.1)

Recall the notation

$$
\begin{gathered}
\sum_{r=0}^{n} a_{r}=a_{0}+a_{1}+a_{2}+\cdots+a_{n} \\
\sum_{r=0}^{\infty} a_{r}=a_{0}+a_{1}+a_{2}+\cdots
\end{gathered}
$$

Examples

$$
\begin{gathered}
\sum_{r=0}^{3} r^{2}=0^{2}+1^{2}+2^{2}+3^{2}=14 \\
\sum_{r=1}^{5} \frac{1}{r}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\left(=\frac{137}{60}\right) \\
\sum_{r=0}^{\infty} \frac{x^{r}}{r!}=e^{x}
\end{gathered}
$$

$$
\sum_{r=1}^{\infty}(-1)^{r+1} \frac{x^{r}}{r}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots=\ln (1+x)
$$

(Note often see $(-1)^{r}$ or $(-1)^{r+1}$ in series. $(-1)^{r}$ is +1 when r is even, -1 when r is odd. $(-1)^{r+1}$ is the other way round. These give us alternating series.)

Finite series always make sense, but infinite ones may or may not.
Given an infinite series $\sum_{r=0}^{\infty} a_{r}$, define its partial sums S_{n} by cutting it off after a_{n}

$$
S_{n}=\sum_{r=0}^{n} a_{r}
$$

(these all make sense).
Say that the series converges if the partial sums get closer and closer to some finite value L, i.e. if $S_{n} \rightarrow L$ as $n \rightarrow \infty$. We write

$$
\sum_{r=0}^{\infty} a_{n}=L
$$

We say that the series diverges otherwise.

Examples

a) Consider

$$
\sum_{r=0}^{\infty} \frac{1}{2^{r}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

The partial sums are $1,3 / 2,7 / 4,15 / 8$, etc., which clearly get closer and closer to 2 . Thus the series is convergent, and

$$
\sum_{r=0}^{\infty} \frac{1}{2^{r}}=2
$$

b) Consider

$$
\sum_{r=0}^{\infty}(-1)^{r}=1-1+1-1+1-1+1-1+\cdots
$$

The partial sums are $1,0,1,0,1,0$, etc., which clearly don't approach any particular value. Thus the series is divergent.

These examples illustrate an important fact: if the terms a_{r} don't get closer and closer to zero, then $\sum_{r=0}^{\infty} a_{r}$ must diverge.

However (equally important), the opposite is not true. Just because the terms get closer and closer to zero, it doesn't mean the series must converge. For example

$$
\sum_{r=1}^{\infty} \frac{1}{r}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

diverges.

6.2 Geometric series (7.3.2, 7.6.1)

One of the few examples when we can actually calculate the value of an infinite series.

A geometric series is one in which each term is a multiple of the previous one, i.e.

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\cdots
$$

a is called the first term and r is the common ratio.
The partial sums are given by

$$
S_{n}=a+a r+a r^{2}+\cdots+a r^{n}
$$

We can work these out with a trick:

$$
r S_{n}=a r+a r^{2}+\cdots+a r^{n}+a r^{n+1}
$$

so

$$
S_{n}-r S_{n}=a-a r^{n+1}
$$

or

$$
S_{n}(1-r)=a\left(1-r^{n+1}\right),
$$

or

$$
S_{n}=a\left(\frac{1-r^{n+1}}{1-r}\right)
$$

What happens as $n \rightarrow \infty$. If $-1<r<1$ then $r^{n+1} \rightarrow 0$, and $S_{n} \rightarrow \frac{a}{1-r}$. If $r \leq-1$ or $r \geq 1$, then the terms aren't getting smaller, and the series diverges.

A geometric series $\sum_{r=0} a r^{n}$ converges to $\frac{a}{1-r}$ if $-1<r<1$, and diverges otherwise.

6.3 Convergence tests (7.6.2, 7.6.3)

In most examples, it is impossible to work out the partial sums S_{n}, and we have to make do with deciding whether the series converges or diverges. There are a number of tests which help to do this.

The comparison test

If $\sum_{r=0}^{\infty} a_{r}$ converges, and $0 \leq\left|b_{r}\right| \leq a_{r}$ for all r, then $\sum_{r=0}^{\infty} b_{r}$ also converges. If $\sum_{r=0}^{\infty} a_{r}$ diverges, and $0 \leq a_{r} \leq b_{r}$ for all r, then $\sum_{r=0}^{\infty} b_{r}$ also diverges.

Intuitively obvious.

Examples

a) Consider the factorial series

$$
\sum_{r=0}^{\infty} \frac{1}{r!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

Each term is less than or equal to the corresponding term in

$$
1+\sum_{r=0}^{\infty} \frac{1}{2^{r}}=1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}
$$

which is 1 plus a convergent geometric series. Hence the factorial series converges (in fact, to e).
b) Consider the harmonic series

$$
\sum_{r=1}^{\infty} \frac{1}{r}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

We group together the terms as follows:

$$
1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right)+\cdots
$$

We can then see that each bracket is $\geq 1 / 2$, so the series is bigger than

$$
1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots
$$

which is divergent. Hence the harmonic series diverges.
c) Consider the series

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots
$$

We compare this with the series $\sum_{r=1}^{\infty} a_{r}$, where $a_{1}=1$ and

$$
a_{r}=\int_{r-1}^{r} \frac{1}{x^{2}} d x
$$

for $r \geq 2$. This is a convergent series, since the partial sums are given by

$$
\begin{aligned}
S_{n} & =1+\int_{1}^{2} \frac{1}{x^{2}} d x+\int_{2}^{3} \frac{1}{x^{2}} d x+\cdots+\int_{n-1}^{n} \frac{1}{x^{2}} d x \\
& =1+\int_{1}^{n} \frac{1}{x^{2}} d x \\
& =1+\left[\frac{-1}{x}\right]_{1}^{n} \\
& =1+\left(-\frac{1}{n}+1\right) \\
& =2-\frac{1}{n} \rightarrow 2 \text { as } n \rightarrow \infty
\end{aligned}
$$

Now $a_{r} \geq \frac{1}{r^{2}}$ for all r, so $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ converges by the comparison test.

The ratio test

Let

$$
l=\lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| .
$$

If $l<1$ then $\sum_{r=0}^{\infty} a_{r}$ converges.
If $l>1$ then $\sum_{r=0}^{\infty} a_{r}$ diverges.
If $l=1$ then the ratio test tells you nothing.

Idea: if $l<1$, choose r with $l<r<1$: then the series is smaller than a geometric series with common ratio r, so must converge.

Examples

a)

$$
\sum_{r=0}^{\infty} \frac{r^{2}}{3^{r}}
$$

We have $a_{r}=\frac{r^{2}}{3^{r}}$, so

$$
\frac{a_{r+1}}{a_{r}}=\frac{(r+1)^{2} 3^{r}}{r^{2} 3^{r+1}}=\frac{1}{3} \frac{(r+1)^{2}}{r^{2}} \rightarrow \frac{1}{3}
$$

as $r \rightarrow \infty$. Hence the series converges.
b)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

We have $a_{n}=\frac{1}{n^{2}}$, so

$$
\frac{a_{n+1}}{a_{n}}=\frac{n^{2}}{(n+1)^{2}} \rightarrow 1
$$

as $n \rightarrow \infty$. Hence the ratio test does not tell us whether this series converges or diverges.

The alternating series test

Suppose each $a_{r} \geq 0, a_{r+1} \leq a_{r}$ for all r, and $a_{r} \rightarrow 0$ as $r \rightarrow \infty$. Then

$$
\sum_{r=0}^{\infty}(-1)^{r} a_{r}
$$

converges.
Examples The series

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

converges. The series

$$
\sum_{r=0}^{\infty}(-1)^{r} e^{-r}=1-e^{-1}+e^{-2}-e^{-3}+\cdots
$$

converges.

6.4 Power series (7.7)

Power series involve a variable x :

$$
\sum_{r=0}^{\infty} a_{r} x^{r}
$$

Whether they converge or diverge can depend on the value of x.
Maclaurin series are examples of power series.
Let

$$
l=\lim _{r \rightarrow \infty}\left|\frac{a_{r+1} x^{r+1}}{a_{r} x^{r}}\right|=\lim _{r \rightarrow \infty}|x|\left|\frac{a_{r+1}}{a_{r}}\right| .
$$

By the ratio test, the power series converges if $l<1$ and diverges if $l>1$. That is, it converges if

$$
|x|<\lim _{r \rightarrow \infty}\left|\frac{a_{r}}{a_{r+1}}\right|
$$

and diverges if

$$
|x|>\lim _{r \rightarrow \infty}\left|\frac{a_{r}}{a_{r+1}}\right|
$$

Let

$$
R=\lim _{r \rightarrow \infty}\left|\frac{a_{r}}{a_{r+1}}\right|
$$

the radius of convergence of the power series.
The power series converges if $-R<x<R$, and diverges if $x>R$ or $x<-R$. If $x=R$ or $x=-R$ the series may converge or diverge: we have to consider these cases separately.

Examples

a) Consider the power series

$$
\sum_{r=0}^{\infty} \frac{x^{r}}{r!} .
$$

We have $a_{r}=\frac{1}{r!}$, so $\frac{a_{r}}{a_{r+1}}=\frac{(r+1)!}{r!}=(r+1)$, so $R=\infty$. Hence the power series converges for all values of x.
b) Consider the power series

$$
\sum_{r=1}^{\infty} \frac{x^{r}}{r}
$$

We have $a_{r}=\frac{1}{r}$, so $\frac{a_{r}}{a_{r+1}}=\frac{r+1}{r} \rightarrow 1$ as $r \rightarrow \infty$. Hence $R=1$. The power series converges for $-1<x<1$, and diverges for $x>1$ or $x<-1$. We have to check the cases $x=1, x=-1$ separately.

If $x=1$, the power series is

$$
\sum_{r=1}^{\infty} \frac{1}{r}
$$

which diverges. If $x=-1$, the power series is

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r}}{r}
$$

which converges by the alternating series test.
Hence the power series converges if $-1 \leq x<1$, and diverges otherwise.
c) Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n 2^{n}}
$$

We have $a_{n}=\frac{(-1)^{n}}{n 2^{n}}$, so

$$
\left|\frac{a_{n}}{a_{n+1}}\right|=\frac{(n+1) 2^{n+1}}{n 2^{n}}=2 \frac{n+1}{n} \rightarrow 2
$$

as $n \rightarrow \infty$. Hence $R=2$, so the power series converges if $-2<x<2$, and diverges if $x<-2$ or $x>2$.

When $x=2$ we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the alternating series test. When $x=-2$, we have

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges.
Hence the power series converges if $-2<x \leq 2$, and diverges otherwise.

