All questions are similar to homework problems.

MATH191 Solutions September 2009

Section A

1. To find the inverse function,

$$
\begin{gathered}
y=\frac{x+2}{2 x-1} \Leftrightarrow y(2 x-1)=x+2 \Leftrightarrow 2 y x-y=x+2 \\
\Leftrightarrow x(2 y-1)=y+2 \Leftrightarrow x=\frac{y+2}{2 y-1} .
\end{gathered}
$$

So the inverse function is given by

$$
f^{-1}(y)=\frac{y+2}{2 y-1} \quad \text { or } \quad f^{-1}(x)=\frac{x+2}{2 x-1} .
$$

[3 marks]
2.
a) $r=\sqrt{3+1}=2$ (1 mark). $\theta=-\frac{\pi}{6}$ because $\sqrt{3}>0$ (2 marks).
b) $x=2 \cos (5 \pi / 3)=1 . y=2 \sin (5 \pi / 3)=-\sqrt{3}$. (1 mark each)

Subtract one mark for each answer not given exactly. [3+2=5 marks]
3. $\sin ^{-1}(-1 / \sqrt{2})=-\pi / 4 \quad(1 \mathrm{mark})$

The general solution of $\sin \theta=\frac{-1}{\sqrt{2}}$ is

$$
\theta=(-1)^{n+1} \pi / 4+n \pi
$$

for any $n \in \mathbb{Z} . \quad$ (3 marks)
$[1+3=4$ marks $]$
4.
a)

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+1}{x^{2}+2 x-1}=\lim _{x \rightarrow \infty} \frac{2-3 x^{-1}+x^{-2}}{1+2 x^{-1}-x^{-2}}=2
$$

(2 marks)
b)

$$
\lim _{x \rightarrow(1 / 2)+} \frac{x+2}{2 x-1}=+\infty
$$

(2 marks)
[4 marks]
5.
a) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{x^{2}+x-1}{2 x-1}\right)=\frac{(2 x+1)(2 x-1)-2\left(x^{2}+x-1\right)}{(2 x-1)^{2}}=\frac{2 x^{2}-2 x+1}{(2 x-1)^{2}} \quad(2 \text { marks }) .
$$

b) By the chain rule,

$$
\frac{d}{d x}\left(e^{x^{2}+x}\right)=(2 x+1) e^{x^{2}+x} \quad(2 \text { marks })
$$

c) By the chain rule,

$$
\frac{d}{d x} \ln (\cos x)=-\tan x . \quad(2 \text { marks })
$$

$$
[2+2+2=6 \text { marks }]
$$

6.

$$
\begin{aligned}
\int_{0}^{\pi / 2}\left(\sin (3 x)+\sin ^{2} x\right) d x & =\int_{0}^{\pi / 2}\left(\sin (3 x)+\frac{1}{2}-\frac{1}{2} \cos (2 x)\right) d x \\
& =\left[-\frac{1}{3} \cos (3 x)+\frac{x}{2}-\frac{1}{4} \sin (2 x)\right]_{0}^{\pi / 2} \quad(3 \text { marks }) \\
& =\frac{1}{3}+\frac{\pi}{4} \quad(2 \text { marks })
\end{aligned}
$$

$[3+2=5$ marks]
7. Differentiating the equation with respect to x gives

$$
2 y^{2}+4 x y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}+1-2 \frac{d y}{d x}=0 \quad(2 \text { marks }) .
$$

Hence

$$
\frac{d y}{d x}=\frac{2 x y-2 y^{2}-1}{4 x y-x^{2}-2} \quad(2 \text { marks })
$$

Thus $\frac{d y}{d x}$ is equal to -1 when $(x, y)=(1,1)$. (2 marks).
The equation of the tangent at this point is therefore

$$
y-1=-(x-1) \quad \text { or } y=2-x \quad(2 \text { marks })
$$

$[2+2+2+2=8$ marks $]$
8. The domain of f is $(0, \infty)$ (1 mark).

$$
f^{\prime}(x)=1-\frac{2}{x}=0 \Leftrightarrow x=2 \quad(2 \text { marks })
$$

So 2 is the only stationary point of f (1 mark)
To determine its nature,

$$
f^{\prime \prime}(x)=\frac{2}{x^{2}}
$$

So $f^{\prime \prime}(2)=\frac{1}{2}>0$, and 2 is a local minimum. (2 marks)
In fact 2 is a global minimum since this is the only stationary point. Hence, since $\lim _{x \rightarrow 0} f(x)=+\infty$ (or since $\lim _{x \rightarrow+\infty} f(x)=+\infty$) the range of f is $(3-2 \ln 2, \infty)$. (2 marks: complete reasoning not required). $[1+2+1+2+2=8$ marks $]$
9.

$$
\begin{aligned}
& z_{1}+z_{2}=2+j \quad(1 \text { mark }) \\
& z_{1}-z_{2}=4-3 j \quad(1 \text { mark }) \\
& z_{1} z_{2}=(3-j)(-1+2 j)=-3+7 j-2 j^{2}=-1+7 j \quad(2 \text { marks }) \\
& z_{1} / z_{2}=\frac{(3-j)(-1-2 j)}{(-1+2 j)(-1-2 j)}=\frac{-3-5 j+2 j^{2}}{5}=-1-j \\
&(2 \text { marks })
\end{aligned}
$$

$[1+1+2+2=6$ marks $]$
10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =-4 \mathbf{j}+\mathbf{k} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =1-3+2=0 \quad(1 \text { mark })
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
$[1+1+1+1+1+1=6$ marks $]$

Section B

11.

a) The Maclaurin series expansion of $(1+x)^{-1}$ is

$$
\begin{equation*}
=1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots \tag{2marks}
\end{equation*}
$$

b) The Maclaurin series expansion of $\ln (1+x)$ is

$$
=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots \cdots . \quad(2 \text { marks })
$$

Hence the other Maclaurin series are:
c) for $(1-x)^{-1}$,

$$
\begin{equation*}
1-(-x)+(-x)^{2} \cdots+(-1)^{n}(-x)^{n} \cdots=1+x+\cdots+x^{n} \cdots \tag{2marks}
\end{equation*}
$$

d) for $\left(1+x^{2}\right)^{-1}$,

$$
1-x^{2}+x^{4} \cdots+(-1)^{n} x^{2 n} \cdots \quad(2 \text { marks })
$$

e) for $\ln \left(1+x^{2}\right)$,

$$
x^{2}-\frac{x^{4}}{2} \cdots+(-1)^{n+1} \frac{x^{2 n}}{n} \cdots \quad(2 \text { marks })
$$

Differentiating this term by term gives

$$
2 x-2 x^{3} \cdots+(-1)^{n+1} 2 x^{2 n-1} \cdots
$$

Meanwhile $2 x$ times the Maclaurin series for $\left(1+x^{2}\right)^{-1}$ is obtained by subtracting c) from a), which gives gives

$$
2 x-2 x^{3} \cdots+(-1)^{n} 2 x^{2 n+1} . \quad(3 \text { marks })
$$

This is to be expected because

$$
\frac{d}{d x} \ln \left(1+x^{2}\right)=2 x\left(1+x^{2}\right)^{-1} \quad(2 \text { marks })
$$

$[2+2+2+2+2+3+2=15$ marks $]$
12.
a) The radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists. In this case

$$
\left|\frac{a_{n}}{a_{n+1}}\right|=\frac{2^{n+1} n^{2}}{2^{n}(n+1)^{2}}=\frac{2}{(1+1 / n)^{2}}
$$

which converges to 2 . So the radius of convergence is 2 . (4 marks)
At $R=2$ the series becomes

$$
\sum_{n=0}^{\infty} n^{2}
$$

which diverges as the terms are not tending to 0 . In fact, they are getting larger. At $R=-2$ the series becomes

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{2}
$$

which again diverges, for the same reason as above. (3 marks)
b) In this case

$$
\left|\frac{a_{n}}{a_{n+1}}\right|=\frac{3^{n}(n+1)}{3^{n+1} n}=\frac{1+\frac{1}{n}}{3}
$$

, which tends to $\frac{1}{3}$ as $n \rightarrow \infty$. Hence $R=\frac{1}{3}$. (4 marks)
At $R=\frac{1}{3}$ the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n}
$$

which diverges. At $R=-\frac{1}{3}$ the series becomes

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n}
$$

which is an alternating series of terms which are decreasing in modulus and tending to 0 . So the series is convergent.
$[4+3+4+4=15$ marks $]$
13. For $f(x)=x^{3}-4 x+2, f^{\prime}(x)=3 x^{2}-4=0 \Leftrightarrow x= \pm \sqrt{4 / 3}$. $f^{\prime}(x)>0$ if $x \in(-\infty,-\sqrt{4 / 3}) \cup(\sqrt{4 / 3}, \infty)$ and $f^{\prime}(x)<0$ if $x \in(-\sqrt{4 / 3}, \sqrt{4 / 3})$. So f is increasing on each of the intervals $(-\infty,-\sqrt{4 / 3})$ and $(\sqrt{4 / 3}, \infty)$, and decreasing

We have on $(-\sqrt{4 / 3}, \sqrt{4 / 3})$. The graph is as shown.

$$
f(-3)=-13, \quad f(-2)=2, \quad f(0)=2, \quad f(1)=-1 . \quad f(2)=2
$$

Note that the local maximum $-\sqrt{4 / 3}$ is in the interval $(-2,0)$ and the local minimum $\sqrt{4 / 3}$ is in the interval $(1,2)$. So there must be exactly one zero in each of the intervals $(-2,-1),(0,1)$ and $(1,2)$, and none elsewhere. (6 marks)

The Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-4 x_{n}+2}{3 x_{n}^{2}-4}=\quad(3 \text { marks })
$$

Hence

$$
\begin{gathered}
x_{1}=-\frac{1}{-2}=\frac{1}{2}, \quad f\left(x_{1}\right)=0.125 \quad(1 \text { mark }) \\
x_{2}=0.538461538, \quad f\left(x_{2}\right)=0.00227583 \quad(2 \text { mark }) \\
x_{3}=0.539188599, \quad f\left(x_{3}\right)=0.000000854 \quad(2 \text { marks })
\end{gathered}
$$

So $f\left(x_{3}\right)$ is 0.0000008 to 1 significant figure (1 mark)
A suggested method for computing the x_{i} and $f\left(x_{i}\right)$ is as follows, starting with x_{0} and using the university calculator keys :

1. 0 sto A

This stores $x_{0}=0$ in A.
2. alpha $A x^{2}+2$ alpha $A-2$ sto B

This displays $f\left(x_{0}\right)$ and stores it in B.
3. 2 alpha $A+2$ sto C

This displays $f^{\prime}\left(x_{0}\right)$ and stores it in C.
4. $A-B \div C$ sto D

This displays $x_{1}=x_{0}-\left(f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)\right.$ and stores it in D.
5. sto A

This then stores x_{1} in A, replacing x_{0}. The only reason for storing in D first is that if an obvious error is spotted, it is possible to return to the stored A and redo the calculation.

$$
[6+3+1+2+2+1=15 \text { marks }]
$$

14. For horizontal asymptotes:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(2 x+1+(x-1)^{-1}\right)=-\infty \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(1+(x-1)^{-1}\right)=1
\end{gathered}
$$

So $y=1$ is a horizontal asymptote (although only at $+\infty$). (2 marks)
For vertical asymptotes: the only possible asymptote is where $x-1=0$, that is, where $x=1$. We have
$\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-}\left(3+(x-1)^{-1}\right)=-\infty, \quad \lim _{x \rightarrow 1+}\left(1+(x-1)^{-1}\right)=+\infty$
So $x=1$ is a vertical asymptote. (1 mark)
For points of continuity: the only possible discontinuities are at 0 and 1. 1 is certainly a discontinuity, because it is a vertical asymptote. 0 is not a discontinuity because $f(0-)=0=f(0+)=f(0) . \quad$ (2 marks)

We have

$$
f^{\prime}(x)= \begin{cases}2-(x-1)^{-2} & \text { if } x \in(-\infty, 0) \\ -(x-1)^{-2} & \text { if } x \in(0,1) \cup(1, \infty)\end{cases}
$$

The function is not differentiable at 1 because it is not continuous there. The only other point that needs checking is 0 . There the function is not differentiable because the left derivative is 1 and the right derivative is -1 . (3 marks)

Now $f^{\prime}(x)<0$ on each of the intervals $(0,1)$ and $(1, \infty)$. For $x \in(-\infty, 0)$, we have

$$
f^{\prime}(x)=0 \Leftrightarrow(x-1)^{2}=\frac{1}{2} \Leftrightarrow x=1 \pm \sqrt{2} / 2
$$

Both these points are >0 and so not in the domain of this formula for the derivative. So there are no stationary points. (2 marks)

For zeros:

$$
2 x+1+\frac{1}{x-1}=0 \Leftrightarrow 2 x^{2}-x=x(2 x-1)=0
$$

which has only the solution 0 in the set where this formula for $f(x)$ is valid and

$$
1+\frac{1}{x-1}=0 \Leftrightarrow x=0
$$

but this is the formula for f only for $x>0$. So f has no zeros in the set where this is the valid formula for $f(x)$. So overall, 0 is the only zero of f (3 marks)

The graph of f is as shown.

$[2+1+2+3+3+2+2=15$ marks $]$

15
a) We have $1+j=\sqrt{2} e^{j \pi / 4}$. So
$(1+j)^{33}=2^{16} \sqrt{2} e^{j(33 \pi / 4)}=16394 \sqrt{2} e^{j(\pi / 4)}=16394 \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} j\right)=16394(1+j)$.
[5 marks]
b) Write $z=r e^{j \theta}$. The polar form of $-27 j$ is $27 e^{3 \pi j / 2}$. De Moivre's Theorem gives

$$
r^{3} e^{3 j \theta}=27 e^{3 \pi j / 2}
$$

So $r^{3}=27$, and $e^{3 j \theta}=e^{3 \pi j / 2}$. So $r=3$ and $3 \theta=3 \pi / 2+2 n \pi$, any integer n. [4 marks]

Distinct values of z are given by taking $n=0,1$ and 2 that is, $\theta=\pi / 2$, $\pi / 2+2 \pi / 3=7 \pi / 6$, and $\pi / 2+4 \pi / 3=11 \pi / 2$. So the solutions to $z^{3}=-27 j$ are

$$
z=3 j, \quad(2 \text { marks })
$$

$$
z=3 \cos (7 \pi / 6)+3 j \sin (7 \pi / 6)=-\frac{3 \sqrt{3}}{2}-\frac{3}{2} j, \quad(2 \text { marks })
$$

$$
z=3 \cos (11 \pi / 6)+3 j \sin (11 \pi / 6)=\frac{3 \sqrt{3}}{2}-\frac{3}{2} j . \quad(2 \operatorname{marks})
$$

$[4+5+2+2+2=15$ marks $]$

