All questions are similar to homework problems.

MATH191 Solutions September 2008

Section A

1. To find the inverse function,

$$
\begin{gathered}
y=\frac{2 x+1}{x-3} \Leftrightarrow y(x-3)=2 x+1 \Leftrightarrow y x-3 y=2 x+1 \\
\Leftrightarrow x(y-2)=3 y+1 \Leftrightarrow x=\frac{3 y+1}{y-2} .
\end{gathered}
$$

(1 mark)
So the inverse function is given by

$$
f^{-1}(y)=\frac{3 y+1}{y-2} \quad \text { or } \quad f^{-1}(x)=\frac{3 x+1}{x-2} .
$$

(1 mark)
The graph of f is shown below (1 mark). It crosses the x-axis at $x=-1 / 2$

and the y-axis at $y=-\frac{1}{3}$. (1 mark). $[1+1+1+1=4$ marks $]$
2. We have $f(0)=0, f^{\prime}(x)=-2(1-2 x)^{-1}$ and $f^{\prime \prime}(x)=-4(1-2 x)^{-2}$, so $f^{\prime}(0)=-2$, and $f^{\prime \prime}(0)=-4$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$.

Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=-2 x-(4 / 2) x^{2}+\cdots=0-2 x-2 x^{2}+\cdots
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$. 1 mark for not saying $\left.f(x)=-2 x-2 x^{2}\right)$. $[3+1+1=5$ marks $]$
3.
a) $r=\sqrt{1+3}=2(1$ mark $) . \theta=\frac{2 \pi}{3}(2$ marks $)$.
b) $x=3 \cos (5 \pi / 3)=\frac{3}{2} . y=3 \sin (5 \pi / 3)=-3 \frac{\sqrt{3}}{2}$. (1 mark each)

Subtract one mark for each answer not given exactly. $[3+2=5$ marks $]$
4.

$$
\begin{aligned}
\int_{0}^{1}\left((1+x)^{-1 / 2}+(1+x)^{-2}\right) d x & =\left[2(1+x)^{1 / 2}-(1+x)^{-1}\right]_{0}^{1} \quad(3 \text { marks }) \\
& \left.=2 \sqrt{2}-2^{-1}-2+1\right) \\
& =2 \sqrt{2}-\frac{3}{2} \quad(2 \text { marks })
\end{aligned}
$$

$[3+2=5$ marks $]$
5. Differentiating the equation with respect to x gives

$$
3 x^{2}+y^{2}+2 x y \frac{d y}{d x}+\frac{d y}{d x}=0 \quad(2 \text { marks }) .
$$

Hence

$$
\frac{d y}{d x}=\frac{-3 x^{2}-y^{2}}{1+2 x y} \quad(2 \text { marks })
$$

Thus $\frac{d y}{d x}$ is equal to $-\frac{4}{-1}=4$ when $(x, y)=(-1,1)$. (2 marks $)$. The equation of the tangent at this point is therefore

$$
y-1=-4(x+1) \quad \text { or } y=4 x+5 \quad(2 \text { marks })
$$

$[2+2+2+2=8$ marks $]$
6.
a) By the chain rule,

$$
\frac{d}{d x}\left(\cos \left(x^{3}\right)\right)=3 x^{2} \sin \left(x^{3}\right) . \quad(2 \text { marks })
$$

b) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{\ln x}{x^{2}-2}\right)=\frac{\left(x^{2}-2\right) x^{-1}-2 x \ln x}{\left(x^{2}-2\right)^{2}}=\frac{x^{2}-2-2 x^{2} \ln x}{x\left(x^{2}-2\right)^{2}}
$$

c) By the chain rule,

$$
\frac{d}{d x}\left(\left(x^{2}+2 x+2\right)^{1 / 2}\right)=\frac{2}{2}(x+1)\left(x^{2}+2 x+2\right)^{-1 / 2}=\frac{x+1}{\sqrt{x^{2}+2 x+2}} \quad(2 \text { marks })
$$

$$
[2+2+2=6 \text { marks }]
$$

7. For $f(x)=x e^{-x}$,

$$
f^{\prime}(x)=-x e^{-x}+e^{-x}=e^{-x}(1-x)
$$

Stationary points are given by solutions of $f^{\prime}(x)=0$, So there is exactly one stationary point, namely $x=1$. (3 marks)

To determine its nature,

$$
f^{\prime \prime}(x)=-e^{-x}(1-x)-e^{-x}=(x-2) e^{-x}
$$

So $f^{\prime \prime}(1)=-e^{-1}<0$, and 1 is a local maximum. (3 marks)
$[3+3=6$ marks $]$
8.

$$
\begin{aligned}
z_{1}+z_{2} & =4-3 j \quad(1 \text { mark }) \\
z_{1}-z_{2} & =2+5 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(3+j)(1-4 j)=3-11 j-4 j^{2}=7-11 j \quad(2 \text { marks }) \\
z_{1} / z_{2} & =\frac{(3+j)(1+4 j)}{(1-4 j)(1+4 j)}=\frac{3+13 j+4 j^{2}}{17}=\frac{-1+13 j}{17} \quad(2 \text { marks }) .
\end{aligned}
$$

$[1+1+2+2=6$ marks $]$
9. $\cos ^{-1}(-\sqrt{3} / 2)=5 \pi / 6 \quad(1$ mark $)$

The general solution of $\cos \theta=\frac{-\sqrt{3}}{2}$ is

$$
\theta= \pm 5 \pi / 6+2 n \pi
$$

for any $n \in \mathbb{Z} . \quad$ (3 marks)
$[1+3=4$ marks $]$
10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =5 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =-\mathbf{i}+\mathbf{j}+6 \mathbf{k} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{4+1+4}=3 \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{3^{2}+2^{2}+4^{2}}=\sqrt{29} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =6+2-8=0 \quad(1 \mathrm{mark})
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
$[1+1+1+1+1+1=6$ marks $]$

Section B

11. The Maclaurin series expansion of $\sqrt{1+x}$ is

$$
=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{64} x^{4}+\cdots+\binom{\frac{1}{2}}{n} x^{n}+\cdots \quad(2 \text { marks })
$$

Here

$$
\binom{\frac{1}{2}}{n}=\frac{\frac{1}{2} \cdot \frac{-1}{2} \cdots\left(\frac{3}{2}-n\right)}{n!}
$$

(This definition is not required.)
Hence the other Maclaurin series are:
a) for $\sqrt{1-x}$,

$$
1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}-\frac{5}{64} x^{4}+\cdots+(-1)^{n}\binom{\frac{1}{2}}{n} x^{n}+\cdots \quad(2 \text { marks })
$$

b) for $\sqrt{4+x}=2(1+x / 4)^{1 / 2}$,

$$
2+\frac{1}{2} x-\frac{1}{64} x^{2}+\frac{1}{512} x^{3}-\frac{5}{8192} x^{4}+\cdots+2 \cdot 4^{-n}\binom{\frac{1}{2}}{n} x^{n}+\cdots
$$

c) for $\sqrt{1-x^{2}}$,

$$
\begin{equation*}
1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{16} x^{6}-\frac{5}{64} x^{8}+\cdots+(-1)^{n}\binom{\frac{1}{2}}{n} x^{2 n}+\cdots \tag{3marks}
\end{equation*}
$$

d) The Maclaurin series of $g(x)=\left(1-x^{2}\right)^{1 / 2}$ is

$$
g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\cdots \frac{g^{n}(0)}{n!} x^{n}+\cdots
$$

So comparing coefficients of x^{n} we see that

$$
g^{(n)}(0)=\begin{align*}
& 0 \tag{5marks}\\
& (-1)^{n} n!\binom{\frac{1}{2}}{n} \text { if } n \text { is even. }
\end{align*}
$$

if n is odd,
$[2+2+3+3+5=15$ marks $]$
12.
a) The radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists. In this case

$$
\left|a_{n} / a_{n+1}\right|=\frac{2^{n}(n+2)^{2}}{2^{n+1}(n+1)^{2}}
$$

which converges to $\frac{1}{2}$. So the radius of convergence is $\frac{1}{2}$. (4 marks)
At $R=\frac{1}{2}$ the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which is convergent. At $R=-\frac{1}{2}$ the series becomes

$$
\sum_{n=1}^{\infty}(-1)^{n}(n+1)^{2}
$$

which is also convergent
(2 marks)
b) In this case $a_{n}=2^{-n}(n+1)^{-1 / 2}$, so $\left|a_{n} / a_{n+1}\right|=2 \sqrt{(n+2) /(n+1)}$, which tends to 2 as $n \rightarrow \infty$. Hence $R=2$. (4 marks)
At $R=2$ the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

which diverges. At $R=-2$ the series becomes

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{\sqrt{n+1}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}
$$

which converges as it is an alternating series and $1 / \sqrt{n}$ decreases to 0 as $n \rightarrow \infty \quad$ (5 marks)
$[4+2+4+5=15$ marks $]$
13. For $f(x)=x^{3}+x^{2}+2 x-3, f^{\prime}(x)=3 x^{2}+2 x+2>0$ for all x because for this quadratic, $\left(b^{2} / 4\right)-a c=1-6<0$. So f is increasing on $(-\infty, \infty)$

We have

$$
f(0)=-3, \quad f(1)=1
$$

So there is just one zero of f, which is in $(0,1)$. (6 marks)
The Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}+x_{n}^{2}+2 x_{n}-3}{3 x_{n}^{2}+2 x_{n}+2}=\quad(3 \text { marks })
$$

Hence, if $x_{0}=1$, we have $f\left(x_{0}\right)=1$ and

$$
x_{1}=\frac{6}{7}, \quad f\left(x_{1}\right)=0.078717201 . . \quad(1 \text { mark })
$$

$$
\begin{array}{ccc}
x_{2}=0.84384236 & f\left(x_{2}\right)=0.0000629443 . . & (2 \text { mark }) \\
x_{3}=0.84373428, & f\left(x_{3}\right)=0.00000004 & (3 \text { marks })
\end{array}
$$

$[6+3+1+2+3=15$ marks $]$
14. For horizontal asymptotes:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(x+(1-x)^{-1}\right)=-\infty \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}(1-x)^{-1}=0
\end{gathered}
$$

So $y=0$ is a horizontal asymptote (although only at $+\infty$). (2 marks)
For vertical asymptotes: the only possible asymptote is where $1-x=0$, that is, where $x=1$. We have

$$
\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-} 1-x=0, \quad \lim _{x \rightarrow 1+}(1-x)^{-1}=-\infty
$$

So $x=1$ is a vertical asymptote. (1 mark)
For points of continuity: the only possible discontinuities are at 1 and 0 . 1 is certainly a discontinuity, because it is a vertical asymptote. 0 is not a discontinuity because

$$
f(0-)=\lim _{x \rightarrow 0}\left(x+(1-x)^{-1}\right)=1=\lim _{x \rightarrow 0}(1-x)=f(0+)=f(0)
$$

(2 marks)
We have

$$
f^{\prime}(x)= \begin{cases}1+(1-x)^{-2} & \text { if } x \in(-\infty, 0) \\ -1 & \text { if } x \in(0,1) \\ (1-x)^{-2} & \text { if } x \in(1, \infty)\end{cases}
$$

[2 marks]
The function is not differentiable at 1 because it is not continuous there. The only other point that needs checking is 0 . There the function is not differentiable because the left derivative is 2 and the right derivative is -1 . (2 marks)

Now $f^{\prime}(x)>0$ on each of the intervals $(-\infty, 0)$, and $(1, \infty)$ and <0 on $(0,1)$. So there are no stationary points. The function f is increasing on each of the intervals $(-\infty, 0]$ and $(1, \infty)$ and decreasing on $[0,1]$. (2 marks)

For zeros: since $(1-x)^{-1} \neq 0$ for any x, and $1-x=0 \Leftrightarrow x=1$ for $x \in[0,1]$. The only other possibility is that $x \in(-\infty, 0)$ and $x+(1-x)^{-1}=0$, that is, when $x-x^{2}+1=0$ and $x<0$, that is when $x^{2}-x-1=0$ and $x<0$. The zeros of $x^{2}-x-1$ are $(1 \pm \sqrt{5}) / 2$. Since $1+\sqrt{5}>0$, and $1-\sqrt{5}<0$, the only two zeros of f are 1 and $(1-\sqrt{5}) / 2 \quad$ (2 marks)

The graph of f is as shown, with $a=(1-\sqrt{5}) / 2$.

[2 marks]
$[2+1+2+2+2+2+2+2=15$ marks $]$

15
a) We have $1-j=\sqrt{2} e^{-j \pi / 4}$. So
$(1-j)^{15}=2^{7} \sqrt{2} e^{-j(15 \pi / 4}=128 \sqrt{2} e^{j(\pi / 4)}=128 \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} j\right)=128(1+j)$.
[4 marks]
b) Write $z=r \cos \theta+j r \sin \theta$. The polar form of -27 is $27(\cos (\pi)+j \sin (\pi))$.

De Moivre's Theorem gives

$$
r^{3}(\cos 3 \theta+j \sin 3 \theta)=27(\cos (\pi)+j \sin (\pi))
$$

So $r^{3}=27, \cos 3 \theta=\cos (\pi), \sin 3 \theta=\sin (\pi)$. So $r=3$ and $3 \theta=\pi+2 n \pi$, any integer n. [6 marks]

Distinct values of z are given by taking $n=0,1,2$, that is, $\theta=\pi / 3, \pi$, $5 \pi / 3$, So the solutions to $z^{3}=-27$ are

$$
\begin{aligned}
& \quad z=3 \cos (\pi / 3)+3 j \sin (\pi / 3)=(3 / 2)(1+\sqrt{3} j), \quad(2 \text { marks }) \\
& z=3 \cos (\pi)+3 j \sin (\pi)=-3 \quad(1 \text { mark }) \\
& z=3 \cos (5 \pi / 3)+3 j \sin (5 \pi / 3)=(3 / 2)(1-\sqrt{3} j) . \quad(2 \text { marks }) \\
& {[5=2+1+2 \text { marks }]} \\
& {[4+6+5=15 \text { marks }]}
\end{aligned}
$$

