Solutions to MATH191 exam January 2011

3 marks

2 marks

2 marks

Standard homework exercise $3+2+2=7$ marks in total

1 mark

1 mark
1 mark
2 marks
Standard homework exercise.
Subtract one mark if $\sqrt{2}$ not given exactly and similarly for $3 \pi / 4.1+1+1+2=5$ marks

1. To find the inverse function,

$$
\begin{gathered}
y=f(x)=\frac{1+2 x}{1-x} \Leftrightarrow y(1-x)=1+2 x \Leftrightarrow y-y x=1+2 x \\
\Leftrightarrow y-1=x(2+y) \Leftrightarrow x=\frac{y-1}{2+y} .
\end{gathered}
$$

So the inverse function is given by

$$
f^{-1}(y)=\frac{y-1}{2+y} \quad \text { or } \quad f^{-1}(x)=\frac{x-1}{2+x} .
$$

The domain of f is $(-\infty, 1) \cup(1, \infty)$, and the range of f is the domain of f^{-1}, that is, $(-\infty,-2) \cup(-2, \infty)$.
The graph of f is as shown, with vertical asymptote $x=1$ and horizontal asymptote at $y=-2$.

2a) $x=3 \cos (-3 \pi / 4)=-\frac{3}{\sqrt{2}}$.
$y=3 \sin (-3 \pi / 4)=-\frac{3}{\sqrt{2}}$.
b) $r=\sqrt{4+4}=2 \sqrt{2}$
$\theta=\tan ^{-1}(-1)+\pi=3 \pi / 4$ because $x<0$.

2 marks

2 marks
l'Hôpital may be used 2 marks

2 marks

Standard homework exercises $4 \times 2=8$ marks

2 marks
2 marks

2 marks

2 marks

Standard homework exercises $4 \times 2=8$ marks in total

3 marks

3 marks

3a) $\lim _{x \rightarrow(-1)-} \frac{x^{2}+2}{x+1}=-\infty$, because $x^{2}+2>0$ for all x and $x+1<0$ for $x<-1$.
b)

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-x-1}{x^{2}-2 x+2}=\lim _{x \rightarrow \infty} \frac{2-x^{-1}-x^{-2}}{1-2 x^{-1}+2 x^{-2}}=2
$$

c)

$$
\begin{gathered}
\lim _{x \rightarrow-1} \frac{3 x^{2}+x-2}{4 x^{2}+5 x+1}=\lim _{x \rightarrow-1} \frac{(3 x-2)(x+1)}{(4 x+1)(x+1)} \\
=\lim _{x \rightarrow-1} \frac{3 x-2}{4 x+1}=\frac{5}{3}
\end{gathered}
$$

d) Since $\tan 0=0^{2}+0=0$, by l'Hôpital,

$$
\lim _{x \rightarrow 0} \frac{\tan x}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x}{2 x+1}=\frac{1}{1}=1
$$

4a) By the Product Rule, $\frac{d}{d x}(3 x \sin x)=3 x \cos x+3 \sin x$.
b) By the Quotient Rule,

$$
\frac{d}{d x}\left(\frac{x+1}{x^{2}+3}\right)=\frac{x^{2}+3-2 x(x+1)}{\left(x^{2}+3\right)^{2}}=\frac{3-x^{2}-2 x}{\left(x^{2}+3\right)^{2}}
$$

c) By the Chain Rule,

$$
\frac{d}{d x} \sin \left(x^{-1}\right)=-\frac{1}{x^{2}} \cos \left(x^{-1}\right)
$$

d) By the Chain Rule

$$
\frac{d}{d x} \cos (\sin x)=-\cos (x) \sin (\sin x)
$$

5.

$$
\begin{gathered}
\int_{0}^{\pi / 6}\left(\cos (3 x)-\sin ^{2}(2 x)\right) \mathrm{d} x=\int_{0}^{\pi / 6}\left(\cos (3 x)-\frac{1}{2}+\frac{1}{2} \cos (4 x)\right) \mathrm{d} x \\
=\left[\frac{1}{3} \sin (3 x)-\frac{x}{2}+\frac{1}{8} \sin (4 x)\right]_{0}^{\pi / 6} \\
=\frac{1}{3} \sin (\pi / 2)-\frac{\pi}{12}+\frac{1}{8} \sin (2 \pi / 3)-0 \\
=\frac{1}{3}-\frac{\pi}{12}+\frac{\sqrt{3}}{16}
\end{gathered}
$$

Standard homework exercise $3+3=6$ marks

2 marks

2 marks

2 marks
2 marks

Standard homework exercise $2+$ $2+2+2=8$ marks

1 mark
1 mark
2 marks
2 marks
Standard homework exercises $1+1+2+2=6$ marks

1 mark
1 mark
1 mark
1 mark
1 mark
2 marks

Standard homework exercise
$1+1+1+1+1+2=7$ marks
6. Differentiating the equation with respect to x gives

$$
\frac{d}{d x}\left(4 x y-y^{3}\right)=4 x \frac{d y}{d x}+4 y-3 y^{2} \frac{d y}{d x}=0
$$

Hence

$$
\frac{d y}{d x}=\frac{-4 y}{4 x-3 y^{2}}
$$

Thus $\frac{d y}{d x}$ is equal to $\frac{-8}{-8}=1$ when $(x, y)=(1,2)$.
The equation of the tangent at this point is therefore

$$
y-2=(x-1) \quad \text { or } \quad y-x-1=0
$$

7. $z_{1}+z_{2}=-2+3 j+1-4 j=-1-j$
$z_{1}-z_{2}=-2+3 j-(1-4 j)=-3+7 j$
$z_{1} z_{2}=(-2+3 j)(1-4 j)=-2+11 j-12 j^{2}=10+11 j$
$z_{1} / z_{2}=\frac{(-2+3 j)(1+4 j)}{1^{2}+4^{2}}=\frac{-2-5 j-12}{17}=\frac{-14-5 j}{17}=-\frac{14}{17}-\frac{5}{17} j$
8. $\mathbf{a}+\mathbf{b}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}+4 \mathbf{i}-\mathbf{j}-\mathbf{k}=6 \mathbf{i}-3 \mathbf{k}$
$\mathbf{a}-\mathbf{b}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}-(4 \mathbf{i}-\mathbf{j}-\mathbf{k})=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
$|\mathbf{a}|=\sqrt{2^{2}+1^{2}+2^{2}}=\sqrt{9}=3$
$|\mathbf{b}|=\sqrt{4^{2}+1^{2}+1^{2}}=\sqrt{18}=3 \sqrt{2}$
$\mathbf{a} \cdot \mathbf{b}=8-1+2=9$
Hence the angle between \mathbf{a} and \mathbf{b} is θ where

$$
\cos \theta=\frac{9}{9 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

and the angle is $\pi / 4$.

3 marks

2 marks

2 marks

5 marks

3 marks

Section B

9a) The Maclaurin series expansion of $\frac{1}{1-x}$ is

$$
1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

b)(i) Replacing x by $-3 x$, the Maclaurin series for $(1+3 x)^{-1}$ is

$$
1-3 x+9 x^{2}+\cdots+(-1)^{n} 3^{n} x^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} 3^{n} x^{n}
$$

b)(ii) Replacing x by x^{3}, the Maclaurin series for $\left(1-x^{3}\right)^{-1}$ is

$$
1+x^{3}+x^{6}+\cdots+x^{3 n}+\cdots=\sum_{n=0}^{\infty} x^{3 n}
$$

c) For $f(x)=(1-x)^{-2}$, we have $f^{\prime}(x)=2(1-x)^{-3}$, $f^{\prime \prime}(x)=(2 \times 3)(1-x)^{-4}$ and $f^{(n)}(x)=(n+1)!(1-x)^{-(n+2)}$. So

$$
\frac{f^{n}(0)}{n!}=n+1
$$

and the Maclaurin series is

$$
1+2 x+3 x^{2}+\cdots+(n+1) x^{n}+\cdots=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

Differentiating the series in a) to obtain this series will be allowed, although they have not been told about this in lectures.
d) The radius of convergence R is $\lim _{n \rightarrow \infty}\left|a_{n}\right| /\left|a_{n+1}\right|$ if this exists, where a_{n} is the coefficient of x^{n} in the Maclaurin series, that is, $a_{n}=n+1$. So

$$
R=\lim _{n \rightarrow \infty} \frac{n+1}{n+2}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{1+\frac{2}{n}}=1
$$

2 marks

2 marks

2 marks

3 marks

3 marks

3 marks
This combines computing stationary points and finding general solutions of simple trigonometric equations. Separately, these are standard homework exercises but the combination is unseen.
$2+2+2+3+3+3=15$ marks

10a) $f^{\prime}(x)=1+\cos x=0 \Leftrightarrow \cos x=-1 \Leftrightarrow x=(2 n+1) \pi$, for $n \in \mathbb{Z}$. So the stationary points of f are all the points $(2 n+1) \pi$ for $n \in \mathbb{Z}$.
$f^{\prime \prime}(x)=-\sin x$ and $\sin ((2 n+1) \pi)=0$ for all n. So these points are all points of inflection.
Since $\cos x \geq-1$ for all x we see that $f^{\prime} \geq 0$ for all x with zeros only at the points $(2 n+1) \pi$ for $n \in \mathbb{Z}$. So f is strictly increasing.
b)

$$
g^{\prime}(x)=1+2 \cos x=0 \quad \Leftrightarrow \quad \cos x=-\frac{1}{2} \quad \Leftrightarrow \quad x= \pm \frac{2 \pi}{3}+2 n \pi, \quad n \in \mathbb{Z}
$$

So the stationary points of g are $\pm \frac{2 \pi}{3}+2 n \pi$ for $n \in \mathbb{Z}$

$$
g^{\prime \prime}(x)=-2 \sin x\left\{\begin{array}{l}
<0 \text { if } x=\frac{2 \pi}{3}+2 n \pi, n \in \mathbb{Z} \\
>0 \text { if } x=-\frac{2 \pi}{3}+2 n \pi, n \in \mathbb{Z}
\end{array}\right.
$$

So $\frac{2 \pi}{3}+2 n \pi$ is a local maximum of g for all $n \in \mathbb{Z}$ and $-\frac{2 \pi}{3}+2 n \pi$ is a local minimum of g for all $n \in \mathbb{Z}$.

The graph is as shown.

2 marks

3 marks

2 marks

2 marks
2 marks 4 marks

11a). For $f(x)=x^{3}-7 x+3$,

$$
f^{\prime}(x)=3 x^{2}-7=0 \quad \Leftrightarrow \quad x= \pm \sqrt{\frac{7}{3}}
$$

It is also clear that $f^{\prime}(x)>0$ if $x<-\sqrt{7 / 3}$ or $x>\sqrt{7 / 3}$, and $f^{\prime}(x)<0$ if $-\sqrt{7 / 3}<x<\sqrt{7 / 3}$. So f is increasing on $(-\infty,-\sqrt{73}]$ and on $[\sqrt{7 / 3}, \infty)$ and decreasing on $[-\sqrt{7 / 3}, \sqrt{7 / 3}]$.
So f has at most three zeros. It has exactly three zeros because

$$
\begin{gathered}
f(-3)=-3<0, \quad f(-2)=9>0 \quad f(0)=3>0, \quad f(1)=-3<0 \\
f(2)=-3<0, \quad f(3)=9>0
\end{gathered}
$$

and hence there is one zero in each of the intervals $(-3,-2),(0,1)$ and $(2,3)$.
The Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-7 x_{n}+3}{3 x_{n}^{2}-7} .
$$

Hence:
$x_{1}=\frac{3}{7}=0.42857143$ to 8 d.p.,
$x_{2}=0.44077758$ to 8 d.p.,
$x_{3}=0.44080771$ to 8 d.p. and $f\left(x_{3}\right)=0.000000001$ to one significant figure.
A suggested method for computing the x_{i} and $f\left(x_{i}\right)$ is as follows, starting with x_{0} and using the university calculator keys :

1. 1 sto A

This stores $x_{0}=1$ in A.
2. alpha $A x^{3}-7$ alpha $A+3$ sto B

This displays $f\left(x_{0}\right)$ and stores it in B.
3. 3 alpha $A x^{2}-7$ sto C

This displays $f^{\prime}\left(x_{0}\right)$ and stores it in C.
4. $A-B \div C$ sto D

This displays $x_{1}=x_{0}-\left(f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)\right.$ and stores it in D.
5. sto A

This then stores x_{1} in A, replacing x_{0}. The only reason for storing in D first is that if an obvious error is spotted, it is possible to return to the stored A and redo the calculation.

2 marks

1 mark

3 marks

2 marks

2 marks

3 marks

2 marks
12. For horizontal asymptotes:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}}=0 \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x^{2}+1=+\infty
\end{gathered}
$$

So $y=0$ is a horizontal asymptote (although only at $-\infty$).
There are no vertical asymptotes because $x^{2}+1>0$ for all real x and so the domain of f is \mathbb{R}.

$$
f^{\prime}(x)=\left\{\begin{array}{l}
\frac{-8 x}{\left(x^{2}+1\right)^{2}} \text { if } \mathrm{x}<1 \\
2 x \text { if } x>1
\end{array}\right.
$$

So f is differentiable everywhere except possibly at $x=1$.

$$
f(1-)=\lim _{x \rightarrow 1-} \frac{4}{x^{2}+1}=2=\lim _{x \rightarrow 1} x^{2}+1
$$

So f is continuous at 1 .

$$
\begin{gathered}
f^{\prime}(1-)=\lim _{x \rightarrow 1-} \frac{-8 x}{\left(x^{2}+1\right)^{2}}=-2 \\
f^{\prime}(1+)=\lim _{x \rightarrow 1+} 2 x=2
\end{gathered}
$$

Since $-2 \neq 2, f$ is not differentiable at $x=1$
Considering the formulae for $f^{\prime}(x)$ for $x<1$ and $x>1$, the only stationary point of f is at $x=0$. Since, for $x<1$,

$$
f^{\prime \prime}(x)=-\frac{8}{\left(x^{2}+1\right)^{2}}+\frac{32 x^{2}}{\left(x^{2}+1\right)^{3}}
$$

we have $f^{\prime \prime}(0)=-8<0$ which is a local maximum.
The graph is as shown

Standard homework exercise $2+1+3+2+2+3+2=15$ marks

5 marks

4 marks

6 marks

13 a) By the quadratic formula, the solutions are

$$
z=\frac{-3 \pm \sqrt{9+16}}{2 j}=\frac{-3 \pm 5}{2 j}=-j \text { or } 4 j .
$$

In the plane, the solutions are as shown.

b) Write $z=r e^{j \theta}$. The polar form of $-1+\sqrt{3} j$ is $2 e^{j 2 \pi / 3}$. De Moivre's Theorem gives

$$
r^{4} e^{4 j \theta}=2 e^{j 2 \pi / 3}
$$

So $r^{4}=2, e^{4 j \theta}=e^{j 2 \pi / 3}$. So $r=2^{1 / 4}$ and $4 \theta=2 \pi / 3+2 n \pi$, any integer n.
Distinct values of z are given by taking $n=0,1,2$ and 3 that is, $\theta=\pi / 6$, $\pi / 6+2 \pi / 4=2 \pi / 3, \pi / 6+4 \pi / 4=7 \pi / 6$ and $\pi / 6+6 \pi / 4=5 \pi / 3$. So the solutions to $z^{4}=1+\sqrt{3} j$ are

$$
\begin{gathered}
z=2^{1 / 4}(\cos (\pi / 6)+j \sin (\pi / 6))=\frac{2^{1 / 4} \sqrt{3}}{2}+\frac{2^{1 / 4}}{2} j \\
z=2^{1 / 4}(\cos (2 \pi / 3)+j \sin (2 \pi / 3))=-\frac{2^{1 / 4}}{2}+\frac{2^{1 / 4} \sqrt{3}}{2} j \\
z=-2^{1 / 4}(\cos (\pi / 6)+j \sin (\pi / 6))=-\frac{2^{1 / 4} \sqrt{3}}{2}-\frac{2^{1 / 4}}{2} j \\
z=-2^{1 / 4}(\cos (2 \pi / 3)+j \sin (2 \pi / 3))=\frac{2^{1 / 4}}{2}-\frac{2^{1 / 4} \sqrt{3}}{2} j
\end{gathered}
$$

The solutions are as shown.

Standard homework exercises $5+4+6=15$ marks

