Solutions to MATH191 exam January 2011

3 marks

2 marks

2 marks

1. To find the inverse function,

$$y = f(x) = \frac{1+2x}{1-x} \iff y(1-x) = 1+2x \iff y-yx = 1+2x$$
$$\Leftrightarrow y-1 = x(2+y) \iff x = \frac{y-1}{2+y}.$$

So the inverse function is given by

$$f^{-1}(y) = \frac{y-1}{2+y}$$
 or $f^{-1}(x) = \frac{x-1}{2+x}$

The domain of f is $(-\infty, 1) \cup (1, \infty)$, and the range of f is the domain of f^{-1} , that is, $(-\infty, -2) \cup (-2, \infty)$.

The graph of f is as shown, with vertical asymptote x = 1 and horizontal asymptote at y = -2.

Standard homework exercise 3+2+2=7 marks in total

- 1 mark
- 1 mark
- $1 \mathrm{mark}$
- $2~{\rm marks}$

Standard homework exercise. Subtract one mark if $\sqrt{2}$ not given exactly and similarly for $3\pi/4$. 1 + 1 + 1 + 2 = 5 marks 2a) $x = 3\cos(-3\pi/4) = -\frac{3}{\sqrt{2}}$. $y = 3\sin(-3\pi/4) = -\frac{3}{\sqrt{2}}$. b) $r = \sqrt{4+4} = 2\sqrt{2}$ $\theta = \tan^{-1}(-1) + \pi = 3\pi/4$ because x < 0.

6. Differentiating the equation with respect to x gives

 $\frac{d}{dx}(4xy - y^3) = 4x\frac{dy}{dx} + 4y - 3y^2\frac{dy}{dx} = 0.$ 2 marks Hence $\frac{dy}{dx} = \frac{-4y}{4x - 3y^2}.$ Thus $\frac{dy}{dx}$ is equal to $\frac{-8}{-8} = 1$ when (x, y) = (1, 2). The equation of the tangent at this point is therefore y - 2 = (x - 1) or y - x - 1 = 0. Standard homework exercise 2 +2 + 2 + 2 = 8 marks 7. $z_1 + z_2 = -2 + 3j + 1 - 4j = -1 - j$ $z_1 - z_2 = -2 + 3j - (1 - 4j) = -3 + 7j$ $z_1 z_2 = (-2 + 3j)(1 - 4j) = -2 + 11j - 12j^2 = 10 + 11j$ $z_1/z_2 = \frac{(-2 + 3j)(1 + 4j)}{1^2 + 4^2} = \frac{-2 - 5j - 12}{17} = \frac{-14 - 5j}{17} = -\frac{14}{17} - \frac{5}{17}j$ 1 mark 1 mark 2 marks 2 marks Standard homework exercises 1 + 1 + 2 + 2 = 6 marks 8. $\mathbf{a} + \mathbf{b} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} + 4\mathbf{i} - \mathbf{j} - \mathbf{k} = 6\mathbf{i} - 3\mathbf{k}$ 1 mark $\mathbf{a} - \mathbf{b} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} - (4\mathbf{i} - \mathbf{j} - \mathbf{k}) = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ $|\mathbf{a}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{9} = 3$ $|\mathbf{b}| = \sqrt{4^2 + 1^2 + 1^2} = \sqrt{18} = 3\sqrt{2}$ 1 mark 1 mark 1 mark $a \cdot b = 8 - 1 + 2 = 9$ 1 mark Hence the angle between **a** and **b** is θ where 2 marks $\cos\theta = \frac{9}{9\sqrt{2}} = \frac{1}{\sqrt{2}}$ and the angle is $\pi/4$.

Standard homework exercise 1 + 1 + 1 + 1 + 1 + 2 = 7 marks

2 marks

2 marks

2 marks

9a) The Maclaurin series expansion of
$$\frac{1}{1-x}$$
 is
 $1+x+x^2+\dots+x^n+\dots=\sum_{n=0}^{\infty}x^n$
b)(i) Replacing x by $-3x$, the Maclaurin series for $(1+3x)^{-1}$ is
 $1-3x+9x^2+\dots+(-1)^n3^nx^n+\dots=\sum_{n=0}^{\infty}(-1)^n3^nx^n$
b)(ii) Replacing x by x^3 , the Maclaurin series for $(1-x^3)^{-1}$ is
 $1+x^3+x^6+\dots+x^{3n}+\dots=\sum_{n=0}^{\infty}x^{3n}$
c) For $f(x) = (1-x)^{-2}$, we have $f'(x) = 2(1-x)^{-3}$, $f''(x) = (2\times3)(1-x)^{-4}$
and $f^{(n)}(x) = (n+1)!(1-x)^{-(n+2)}$. So
 $\frac{f^n(0)}{n!} = n+1$
and the Maclaurin series is
 $1+2x+3x^2+\dots+(n+1)x^n+\dots=\sum_{n=0}^{\infty}(n+1)x^n$
Differentiating the series in a) to obtain this series will be allowed, although they have not been told about this in lectures.
d) The radius of convergence R is $\lim_{n\to\infty}|a_n|/|a_{n+1}|$ if this exists, where a_n is the coefficient of x^n in the Maclaurin series, that is, $a_n = n + 1$. So

 $R = \lim_{n \to \infty} \frac{n+1}{n+2} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{1 + \frac{2}{n}} = 1$

4

3 marks

2 marks

2 marks

5 marks

Standard homework exercises, with the last part being a much later exercise than the others. 3+2+2+5+3=15 marks 2 marks

2 marks

2 marks

3 marks

3 marks

10a) $f'(x) = 1 + \cos x = 0 \Leftrightarrow \cos x = -1 \Leftrightarrow x = (2n+1)\pi$, for $n \in \mathbb{Z}$. So the stationary points of f are all the points $(2n+1)\pi$ for $n \in \mathbb{Z}$.

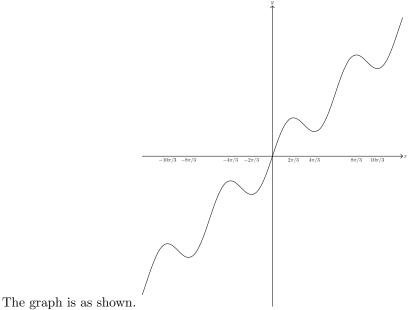
 $f''(x) = -\sin x$ and $\sin((2n+1)\pi) = 0$ for all n. So these points are all points of inflection. Since $\cos x \ge -1$ for all x we see that $f' \ge 0$ for all x with zeros only at the

points $(2n+1)\pi$ for $n \in \mathbb{Z}$. So f is strictly increasing. b)

 $g'(x) = 1 + 2\cos x = 0 \quad \Leftrightarrow \quad \cos x = -\frac{1}{2} \quad \Leftrightarrow \quad x = \pm \frac{2\pi}{3} + 2n\pi, \quad n \in \mathbb{Z}$ So the stationary points of g are $\pm \frac{2\pi}{3} + 2n\pi$ for $n \in \mathbb{Z}$

$$g''(x) = -2\sin x \begin{cases} < 0 \text{ if } x = \frac{2\pi}{3} + 2n\pi, n \in \mathbb{Z}, \\ > 0 \text{ if } x = -\frac{2\pi}{3} + 2n\pi, n \in \mathbb{Z} \end{cases}$$

So $\frac{2\pi}{3} + 2n\pi$ is a local maximum of g for all $n \in \mathbb{Z}$ and $-\frac{2\pi}{3} + 2n\pi$ is a local minimum of g for all $n \in \mathbb{Z}$.



3 marks

This combines computing stationary points and finding general solutions of simple trigonometric equations. Separately, these are standard homework exercises but the combination is unseen.

2+2+2+3+3+3=15 marks

2 marks

3 marks

2 marks

2 marks 2 marks 4 marks

Standard homework exercise 2+3+2+2+2+4 = 15 marks

11a). For $f(x) = x^3 - 7x + 3$,

$$f'(x) = 3x^2 - 7 = 0 \iff x = \pm \sqrt{\frac{7}{3}}$$

It is also clear that f'(x) > 0 if $x < -\sqrt{7/3}$ or $x > \sqrt{7/3}$, and f'(x) < 0 if $-\sqrt{7/3} < x < \sqrt{7/3}$. So f is increasing on $(-\infty, -\sqrt{73}]$ and on $[\sqrt{7/3}, \infty)$ and decreasing on $[-\sqrt{7/3}, \sqrt{7/3}]$. So f has at most three zeros. It has exactly three zeros because f(-3) = -3 < 0, f(-2) = 9 > 0 f(0) = 3 > 0, f(1) = -3 < 0, f(2) = -3 < 0, f(3) = 9 > 0 and hence there is one zero in each of the intervals (-3, -2), (0, 1) and (2, 3). The Newton-Raphson formula becomes $x_{n+1} = x_n - \frac{x_n^3 - 7x_n + 3}{3x_n^2 - 7}$.

 $x_1 = \frac{3}{7} = 0.42857143$ to 8 d.p.,

 $x_2 = 0.44077758$ to 8 d.p.,

 $x_3 = 0.44080771$ to 8 d.p. and $f(x_3) = 0.000000001$ to one significant figure. A suggested method for computing the x_i and $f(x_i)$ is as follows, starting with x_0 and using the university calculator keys :

1. 1 sto A

- This stores $x_0 = 1$ in A.
- 2. alpha $A x^3 7$ alpha A + 3 sto B
 - This displays $f(x_0)$ and stores it in B.
- 3. 3 alpha $A x^2 7$ sto CThis displays $f'(x_0)$ and stores it in C.
- 4. $A B \div C$ sto D
 - This displays $x_1 = x_0 (f(x_0)/f'(x_0))$ and stores it in D.

5. sto A

This then stores x_1 in A, replacing x_0 . The only reason for storing in D first is that if an obvious error is spotted, it is possible to return to the stored A and redo the calculation.

12. For horizontal asymptotes:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x^2 + 1} = \lim_{x \to -\infty} \frac{\frac{1}{x^2}}{1 + \frac{1}{x^2}} = 0,$$
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 + 1 = +\infty.$$

So y = 0 is a horizontal asymptote (although only at $-\infty$). There are no vertical asymptotes because $x^2 + 1 > 0$ for all real x and so the domain of f is \mathbb{R} .

$$f'(x) = \begin{cases} \frac{-8x}{(x^2+1)^2} & \text{if } x < 1\\ \\ 2x & \text{if } x > 1 \end{cases}$$

So f is differentiable everywhere except possibly at x = 1.

$$f(1-) = \lim_{x \to 1-} \frac{4}{x^2 + 1} = 2 = \lim_{x \to 1} x^2 + 1$$

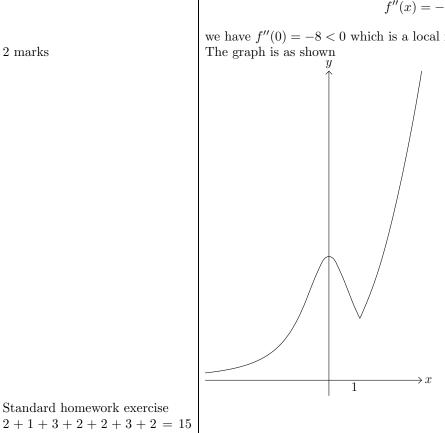
So f is continuous at 1.

$$f'(1-) = \lim_{x \to 1-} \frac{-8x}{(x^2+1)^2} = -2$$
$$f'(1+) = \lim_{x \to 1+} 2x = 2.$$

Since $-2 \neq 2$, f is not differentiable at x = 1Considering the formulae for f'(x) for x < 1 and x > 1, the only stationary point of f is at x = 0. Since, for x < 1,

$$f''(x) = -\frac{8}{(x^2+1)^2} + \frac{32x^2}{(x^2+1)^3}$$

we have f''(0) = -8 < 0 which is a local maximum. The graph is as shown



2 + 1 + 3 + 2 + 2 + 3 + 2 = 15marks

2 marks

1 mark

3 marks

2 marks

2 marks

3 marks

2 marks

13 a) By the quadratic formula, the solutions are

 $z = \frac{-3 \pm \sqrt{9 + 16}}{2j} = \frac{-3 \pm 5}{2j} = -j \text{ or } 4j.$ In the plane, the solutions are as shown. \downarrow_{4j} b) Write $z = re^{j\theta}$. The polar form of $-1 + \sqrt{3}j$ is $2e^{j2\pi/3}$. De Moivre's Theorem gives $r^4 e^{4j\theta} = 2e^{j2\pi/3}$ So $r^4 = 2$, $e^{4j\theta} = e^{j2\pi/3}$. So $r = 2^{1/4}$ and $4\theta = 2\pi/3 + 2n\pi$, any integer *n*. Distinct values of z are given by taking n = 0, 1, 2 and 3 that is, $\theta = \pi/6$, $\pi/6 + 2\pi/4 = 2\pi/3, \ \pi/6 + 4\pi/4 = 7\pi/6 \ \text{and} \ \pi/6 + 6\pi/4 = 5\pi/3$. So the solutions to $z^4 = 1 + \sqrt{3}j$ are $z = 2^{1/4} (\cos(\pi/6) + j\sin(\pi/6)) = \frac{2^{1/4}\sqrt{3}}{2} + \frac{2^{1/4}}{2}j,$ $z = 2^{1/4} (\cos(2\pi/3) + j\sin(2\pi/3)) = -\frac{2^{1/4}}{2} + \frac{2^{1/4}\sqrt{3}}{2}j,$ $z = -2^{1/4}(\cos(\pi/6) + j\sin(\pi/6)) = -\frac{2^{1/4}\sqrt{3}}{2} - \frac{2^{1/4}}{2}j$ $z = -2^{1/4} (\cos(2\pi/3) + j\sin(2\pi/3)) = \frac{2^{1/4}}{2} - \frac{2^{1/4}\sqrt{3}}{2}j$ The solutions are as shown. $-2^{1/4}/2 + 2^{1/4}\sqrt{3}j/2$ $2^{1/4}\sqrt{3}/2 + 2^{1/4}j/2$ $-2^{1/4}\sqrt{3}/2 - 2^{1/4}j/2$ $2^{1/4}/2 - 2^{1/4}\sqrt{3}j/2$

4 marks

5 marks

6 marks

Standard homework exercises 5+4+6=15 marks