All questions are similar to homework problems.

MATH191 Solutions January 2009 Section A

1. To find the inverse function,

$$y = \frac{2x+1}{x+2} \iff y(x+2) = 2x+1 \iff yx+2y = 2x+1$$
$$\Leftrightarrow x(y-2) = 1-2y \iff x = \frac{1-2y}{y-2}.$$

So the inverse function is given by

$$f^{-1}(y) = \frac{1-2y}{y-2}$$
 or $f^{-1}(x) = \frac{1-2x}{x-2}$

[3 marks]

2.

a) $r = \sqrt{1+3} = 2$ (1 mark). $\theta = 2\frac{\pi}{3}$ because -1 < 0 (2 marks). b) $x = \cos(3\pi/4) = -1/\sqrt{2}$. $y = \sin(3\pi/4) = 1/\sqrt{2}$. (1 mark each) Subtract one mark for each answer not given exactly. [3+2=5 marks]

3. $\tan^{-1}(-1/\sqrt{3}) = -\pi/6$ (1 mark) The general solution of $\tan \theta = \frac{-1}{\sqrt{3}}$ is

$$\theta = -\pi/6 + n\pi$$

for any $n \in \mathbb{Z}$. (3 marks) [1+3=4 marks]

4.

a)

$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2 + 2} = \lim_{x \to \infty} \frac{2 - x^{-1} + x^{-2}}{1 + 2x^{-2}} = 2$$

(2 marks)

b)

$$\lim_{x \to (-2)+} \frac{2x+1}{x+2} = -\infty.$$

(2 marks)

[4 marks]

5.

a) By the quotient rule,

$$\frac{d}{dx}\left(\frac{x^2+1}{x-1}\right) = \frac{2x(x-1)-(x^2+1)}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2} \qquad (2 \text{ marks}).$$

b) By the product rule and chain rule,

$$\frac{d}{dx}\left(xe^{x^2}\right) = e^{x^2} + 2x^2e^{x^2} = (1+2x^2)e^{x^2} \qquad (2 \text{ marks}).$$

c) By the chain rule,

$$\frac{d}{dx}\ln(x^2+3x+3) = \frac{2x+3}{x^2+3x+3}.$$
 (2 marks)

[2+2+2=6 marks]

$$\int_{0}^{\pi/2} (\sin(2x) + \cos^{2}(x)) dx = \int_{0}^{\pi/2} \left(\sin(2x) + \frac{1}{2} + \frac{1}{2} \cos(2x) \right) dx$$
$$= \left[-\frac{1}{2} \cos(2x) + \frac{x}{2} + \frac{1}{4} \sin(2x) \right]_{0}^{\pi/2} \quad (3 \text{ marks})$$
$$= 1 + \frac{\pi}{4} \quad (2 \text{ marks})$$

[3+2=5 marks]

7. Differentiating the equation with respect to x gives

$$y^{2} + 2xy\frac{dy}{dx} + 2xy + x^{2}\frac{dy}{dx} + 1 + \frac{dy}{dx} = 0$$
 (2 marks).

Hence

$$\frac{dy}{dx} = -\frac{y^2 + 2xy + 1}{2xy + x^2 + 1} \qquad (2 \text{ marks}).$$

Thus $\frac{dy}{dx}$ is equal to -1 when (x, y) = (1, 1). (2 marks). The equation of the tangent at this point is therefore

$$y - 1 = -(x - 1)$$
 or $y = 2 - x$ (2 marks).

[2+2+2+2=8 marks]

8. The domain of f is $(0, \infty)$ (1 mark).

$$f'(x) = 1 - \frac{3}{x} = 0 \iff x = 3$$
 (2 marks)

So 3 is the only stationary point of f (1 mark)

To determine its nature,

$$f''(x) = \frac{3}{x^2}$$

So $f''(3) = \frac{1}{3} > 0$, and 3 is a local minimum. (2 marks) In fact 3 is a global minimum since this is the only stationary point. Hence, since $\lim_{x\to 0} f(x) = +\infty$ (or since $\lim_{x\to +\infty} f(x) = +\infty$) the range of f is $(3 - 3 \ln 3, \infty)$. (2 marks: complete reasoning not required). [1 + 2 + 1 + 2 + 2 = 8 marks]

9.

$$z_{1} + z_{2} = 1 - j \quad (1 \text{ mark})$$

$$z_{1} - z_{2} = 3 - 7j \quad (1 \text{ mark})$$

$$z_{1}z_{2} = (2 - 4j)(-1 + 3j) = -2 + 10j - 12j^{2} = 10 + 10j \quad (2 \text{ marks})$$

$$z_{1}/z_{2} = \frac{(2 - 4j)(-1 - 3j)}{(-1 + 3j)(-1 - 3j)} = \frac{-2 - 2j + 12j^{2}}{10} = \frac{-14 - 2j}{10} = -\frac{7}{5} - \frac{1}{5}j \quad (2 \text{ marks}).$$

[1+1+2+2=6 marks]

10.

$$\mathbf{a} + \mathbf{b} = 3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} \quad (1 \text{ mark})$$

$$\mathbf{a} - \mathbf{b} = \mathbf{i} - 5\mathbf{j} + \mathbf{k} \quad (1 \text{ mark})$$

$$|\mathbf{a}| = \sqrt{2^2 + 1^2 + 2^2} = 3 \quad (1 \text{ mark})$$

$$|\mathbf{b}| = \sqrt{1^2 + 4^2 + 1^2} = \sqrt{18} \quad (1 \text{ mark})$$

$$\mathbf{a} \cdot \mathbf{b} = 2 - 4 + 2 = 0 \quad (1 \text{ mark}).$$

Hence the angle between **a** and **b** is $\pi/2$ (1 mark). [1+1+1+1+1+1=6 marks]

Section B

11.

a) The Maclaurin series expansion of $(1 + x)^{-1}$ is

$$= 1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + \dots$$
 (2 marks)

b) The Maclaurin series expansion of $\ln(1+x)$ is

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$
 (2 marks)

Hence the other Maclaurin series are:

- c) for $(1-x)^{-1}$, $1-(-x)+(-x)^2\dots+(-1)^n(-x)^n\dots=1+x+\dots+x^n+\dots$ (2 marks)
- d) for $\ln(1-x)$,

$$-x - \frac{(-x)^2}{2} + \dots + (-1)^{n+1} \frac{(-x)^n}{n} \dots = -x - \frac{x^2}{2} \dots - \frac{x^n}{n} - \dots$$
 (2 marks)

e) for $\ln(1 - x^2)$,

$$-x^2 - \frac{x^4}{2} \cdots - \frac{x^{2n}}{n} \cdots - \cdots \qquad (2 \text{ marks})$$

Differentiating this term by term gives

$$-2x - 2x^3 \cdots - 2x^{2n-1} \cdots$$

Meanwhile the Maclaurin series for $(1 + x)^{-1} - (1 - x)^{-1}$ is obtained by subtracting c) from a), which gives

$$1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + \dots - (1 + x + \dots + x^{n} \dots)$$

= $-2x - 2x^{3} \dots - 2x^{2n-1} \dots$ (3 marks)

This is to be expected because

$$\frac{d}{dx}\ln(1-x^2) = \frac{d}{dx}(\ln(1+x) + \ln(1-x)) = (1+x)^{-1} - (1-x)^{-1} \qquad (2 \text{ marks})$$
$$[2+2+2+2+2+3+2 = 15 \text{ marks}]$$

12.

a) The radius of convergence R of the power series

$$\sum_{n=0}^{\infty} a_n x^n$$

is given by

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,$$

provided this limit exists. In this case

$$\left|\frac{a_n}{a_{n+1}}\right| = \frac{2^n (n+1)^2}{2^{n+1} n^2} = \frac{(1+1/n)^2}{2},$$

which converges to $\frac{1}{2}$. So the radius of convergence is $\frac{1}{2}$. (4 marks) At $R = \frac{1}{2}$ the series becomes

$$\sum_{n=0}^{\infty} \frac{1}{n^2}$$

which converges. At $R = -\frac{1}{2}$ the series becomes

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$$

which again converges, by comparison with the first series. (3 marks)

b) In this case

$$\left|\frac{a_n}{a_{n+1}}\right| = \frac{2^n(3^{n+1}+1)}{2^{n+1}(3^n+1)} = \frac{3+3^{-n}}{2(1+3^{-n})},$$

which tends to $\frac{3}{2}$ as $n \to \infty$. Hence $R = \frac{3}{2}$. (4 marks) At $R = \frac{3}{2}$ the series becomes

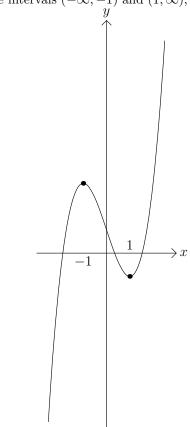
$$\sum_{n=0}^{\infty} \frac{3^n}{3^n+1} = \sum_{n=1}^{\infty} \frac{1}{1+3^{-n}}$$

which diverges, because the terms in the sum are are tending to 1, not to 0. At $R=-\frac{3}{2}$ the series becomes

$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{3^n + 1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{1 + 3^{-n}}$$

which again diverges as the terms are tending to 1. (4 marks)[4+3+4+4 = 15 marks]

13. For $f(x) = x^3 - 3x + 1$, $f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1) = 0 \Leftrightarrow x = \pm 1$. Now x - 1 and x + 1 have the same sign if x < -1 or x > 1, and opposite signs if -1 < x < 1. So f is increasing on each of the intervals $(-\infty, -1)$ and $(1, \infty)$,



and decreasing on (-1, 1). The graph is as shown. We have

$$f(-2) = -1$$
, $f(-1) = 4$, $f(0) = 1$, $f(1) = -1$. $f(2) = 3$

So there must be exactly one zero in each of the intervals (-2, -1), (0, 1) and (1, 2), and none elsewhere. (6 marks)

The Newton-Raphson formula becomes

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n + 1}{3x_n^2 - 3} = (3 \text{ marks})$$

Hence

$$x_1 = -\frac{1}{-3} = \frac{1}{3}, \quad f(x_1) = 0.037037037$$
 (1 mark)
 $x_2 = 0.347222222, \qquad f(x_2) = 0.00019558$ (2 mark)

 $x_3 = 0.347296353, \quad f(x_3) = 0.0000000005 \quad (3 \text{ marks})$

with the last answer being $f(x_3)$ to one significant figure.

A suggested method for computing the x_i and $f(x_i)$ is as follows, starting with x_0 and using the university calculator keys :

1. 0 sto A

This stores $x_0 = 0$ in A.

- 2. alpha $A x^2 + 2$ alpha A 2 sto BThis displays $f(x_0)$ and stores it in B.
- 3. 2 alpha A + 2 sto C

This displays $f'(x_0)$ and stores it in C.

4. $A - B \div C$ sto D

This displays $x_1 = x_0 - (f(x_0)/f'(x_0))$ and stores it in D.

5. sto ${\cal A}$

This then stores x_1 in A, replacing x_0 . The only reason for storing in D first is that if an obvious error is spotted, it is possible to return to the stored A and redo the calculation.

[6+3+1+2+3=15 marks]

14. For horizontal asymptotes:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x + 1 + 2(x - 1)^{-1}) = -\infty,$$
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 + 2(x - 1)^{-1} \right) = 1.$$

So y = 1 is a horizontal asymptote (although only at $+\infty$). (2 marks)

For vertical asymptotes: the only possible asymptote is where x - 1 = 0, that is, where x = 1. We have

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(1 + 2(x-1)^{-1} \right) = -\infty, \quad \lim_{x \to 1^{+}} \left(1 + 2(x-1)^{-1} \right) = +\infty$$

So x = 1 is a vertical asymptote. (1 mark)

For points of continuity: the only possible discontinuities are at 0 and 1. 1 is certainly a discontinuity, because it is a vertical asymptote. 0 is not a discontinuity because f(0-) = -1 = f(0+) = f(0). (2 marks)

We have

$$f'(x) = \begin{cases} 1 - 2(x-1)^{-2} & \text{if } x \in (-\infty, 0), \\ -2(x-1)^{-2} & \text{if } x \in (0, 1) \cup (1, \infty), \end{cases}$$

The function is not differentiable at 1 because it is not continuous there. The only other point that needs checking is 0. There the function is not differentiable because the left derivative is -1 and the right derivative is -2. (2 marks)

Now f'(x) < 0 on each of the intervals (0,1) and $(1,\infty)$. For $x \in (-\infty,0)$, we have

$$f'(x) = 0 \Leftrightarrow (x-1)^2 = 2 \Leftrightarrow x = 1 \pm \sqrt{2}$$

Since $1 + \sqrt{2} > 0$ and $1 - \sqrt{2} < 0$, the only stationary point is $1 - \sqrt{2}$. (2marks)

For $x \in (-\infty, 0)$, we have

$$f''(x) = 4(x-1)^{-3}$$

and hence $f''(1-\sqrt{2}) = -\sqrt{2} < 0$, and $1-\sqrt{2}$ is a local maximum. So f is decreasing on each of the intervals $(1-\sqrt{2},1)$ and $(1,\infty)$, and increasing on $(-\infty, 1-\sqrt{2})$. (2 marks)

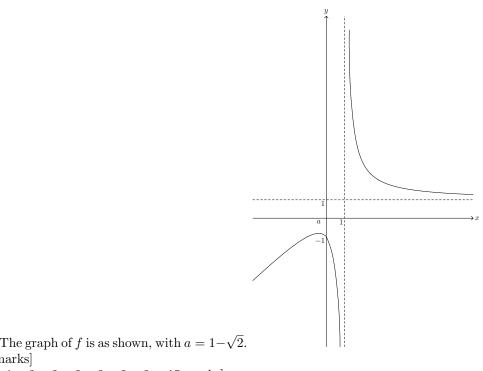
For zeros:

$$x + 1 + \frac{2}{x - 1} = 0 \iff x^2 - 1 + 2 = 0,$$

which has no solutions, and

$$1 + \frac{2}{x - 1} = 0 \iff x = -1,$$

but this is the formula for f only for x > 0. So f has no zeros (2 marks)



The graph of f is as shown, with $a = 1 - \sqrt{2}$. [2 marks] [2 + 1 + 2 + 2 + 2 + 2 + 2 + 2 = 15 marks]

15 a) We have $1 - j = \sqrt{2}e^{-j\pi/4}$. So

$$(1-j)^{15} = 2^7 \sqrt{2} e^{-j(15\pi/4)} = 128\sqrt{2} e^{j(\pi/4)} = 128\sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}j\right) = 128(1+j)$$

[5 marks]

b) Write $z = re^{j\theta}$. The polar form of $3\sqrt{3}j$ is $3\sqrt{3}e^{j\pi/2}$. De Moivre's Theorem gives

$$r^3 e^{3j\theta} = 3\sqrt{3}e^{j\pi/2}$$

So $r^3 = 3\sqrt{3}$, $e^{3j\theta} = e^{j\pi/2}$. So $r = \sqrt{3}$ and $3\theta = \pi/2 + 2n\pi$, any integer n. [4 marks]

Distinct values of z are given by taking n = 0, 1 and 2 that is, $\theta = \pi/6$, $\pi/6 + 2\pi/3 = 5\pi/6$, and $\pi/6 + 4\pi/3 = 3\pi/2$. So the solutions to $z^3 = 3\sqrt{3}j$ are

$$z = \sqrt{3}\cos(\pi/6) + \sqrt{3}j\sin(\pi/6) = \frac{3}{2} + \frac{\sqrt{3}}{2}j, \qquad 2 \text{ marks}$$

$$z = \sqrt{3}\cos(5\pi/6) + \sqrt{3}j\sin(5\pi/6) = -\frac{3}{2} + \frac{\sqrt{3}}{2}j, \qquad 2 \text{ marks}$$

$$z = \sqrt{3}\cos((3\pi/2)) + \sqrt{3}j\sin((3\pi/2)) = -\sqrt{3}j.$$
 2 marks

[4+5+2+2+2=15 marks]