All questions are similar to homework problems.

MATH191 Solutions January 2008 Section A

1. To find the inverse function,

$$
\begin{gathered}
y=\frac{x+3}{x-2} \Leftrightarrow y(x-2)=x+3 \Leftrightarrow y x-2 y=x+3 \\
\Leftrightarrow x(y-1)=2 y+3 \Leftrightarrow x=\frac{2 y+3}{y-1} .
\end{gathered}
$$

(1 mark)
So the inverse function is given by

$$
f^{-1}(y)=\frac{2 y+3}{y-1} \quad \text { or } \quad f^{-1}(x)=\frac{2 x+3}{x-1} .
$$

(1 mark)
The graph is shown below (1 mark). It crosses the x-axis at $x=-3$ and the

y-axis at $y=-\frac{3}{2}$. (1 mark).
$[1+1+1+1=4$ marks $]$
2. We have $f(0)=1, f^{\prime}(x)=2(1-2 x)^{-2}$ and $f^{\prime \prime}(x)=8(1-2 x)^{-3}$, so $f^{\prime}(0)=2$, and $f^{\prime \prime}(0)=8$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$.

Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=1+2 x+(8 / 2) x^{2}+\cdots=1+2 x+4 x^{2}+\cdots
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0) .1$ mark for not saying $\left.f(x)=1+2 x+4 x^{2}\right)$.
$[3+1+1=5$ marks $]$
3.
a) $r=4 \sqrt{2}$ (1 mark). $\theta=\frac{5 \pi}{4}$ (2 marks).
b) $x=4 \sqrt{2} \cos (5 \pi / 4)=4 \sqrt{2}(-1 / \sqrt{2})=-4 . y=4 \sqrt{2} \sin (5 \pi / 4)=4 \sqrt{2}(-1 / \sqrt{2})=$ -4 . (1 mark each)

Subtract one mark for each answer not given exactly. It is OK to say that from a) $x=-4$ and $y--4$ $[3+2=5$ marks]
4.

$$
\begin{align*}
\int_{0}^{1}\left((1+x)^{-1}+(1+x)^{-2}\right) d x & =\left[\ln (1+x)-(1+x)^{-1}\right]_{0}^{1} \tag{3marks}\\
& \left.=(\ln (2)-\ln (1))-\frac{1}{2}+1\right) \\
& =\ln 2+\frac{1}{2} . \quad(2 \text { marks })
\end{align*}
$$

$[3+2=5$ marks]
5. Differentiating the equation with respect to x gives

$$
3 x^{2}+y+x \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=0 \quad(2 \text { marks })
$$

Hence

$$
\frac{d y}{d x}=\frac{-3 x^{2}-y}{x+3 y^{2}} \quad(2 \text { marks })
$$

Thus $\frac{d y}{d x}$ is equal to $-\frac{1}{2}$ when $(x, y)=(1,-1)$. (2 marks).
The equation of the tangent at this point is therefore

$$
y+1=-\frac{1}{2}(x-1) \quad \text { or } y=-\frac{1}{2}(x+1) \quad(2 \text { marks })
$$

$[2+2+2+2=8$ marks $]$
6.
a) By the chain rule,

$$
\frac{d}{d x}\left(\sin \left(x^{3}-1\right)\right)=3 x^{2} \cos \left(x^{3}-1\right) . \quad(2 \text { marks })
$$

b) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{\sin x}{x^{2}+1}\right)=\frac{\left(x^{2}+1\right) \cos x-2 x \sin x}{\left(x^{2}+1\right)^{2}} \quad(2 \text { marks })
$$

c) By the chain rule,

$$
\frac{d}{d x}\left(\ln \left(x^{3}+2 x-1\right)=\frac{3 x^{2}+2}{x^{3}+2 x-1} . \quad(2 \text { marks })\right.
$$

$$
[2+2+2=6 \text { marks }]
$$

7.

$$
f^{\prime}(x)=-2 x\left(x^{2}+1\right)^{-2}
$$

Stationary points are given by solutions of $f^{\prime}(x)=0$, So there is exactly one stationary point, namely $x=0 . \quad$ (3 marks)

To determine its nature,

$$
f^{\prime \prime}(x)=-2\left(x^{2}+1\right)^{-2}+8 x^{2}\left(x^{2}+1\right)^{-3} .
$$

So $f^{\prime \prime}(0)=-2<0$, and 0 is a local maximum. (3 marks) $[3+3=6$ marks $]$
8.

$$
\begin{aligned}
z_{1}+z_{2} & =2-j \quad(1 \text { mark }) \\
z_{1}-z_{2} & =5 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(1+2 j)(1-3 j)=1-j-6 j^{2}=7-j \quad(2 \text { marks }) \\
z_{1} / z_{2} & =\frac{(1+2 j)(1+3 j)}{(1-3 j)(1+3 j)}=\frac{1+5 j+6 j^{2}}{10}=\frac{-1+j}{2} \quad(2 \text { marks })
\end{aligned}
$$

$[1+1+2+2=6$ marks $]$
9. $\sin ^{-1}(-\sqrt{3} / 2)=-\pi / 3 \quad(1 \mathrm{mark})$

The general solution of $\sin \theta=\frac{-\sqrt{3}}{2}$ is

$$
\theta=-\pi / 3+2 n \pi \text { or } \theta=-2 \pi / 3+2 n \pi
$$

for any $n \in \mathbb{Z} . \quad$ (3 marks)
[$1+3=4$ marks $]$
10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =4 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =2 \mathbf{i}-6 \mathbf{j}+\mathbf{k} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{3^{2}+1^{2}+2^{2}}=\sqrt{14} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{1^{2}+5^{2}+1^{2}}=\sqrt{27} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =2-5+3=0 \quad(1 \text { mark }) .
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
$[1+1+1+1+1+1=6$ marks $]$

Section B

11. The Maclaurin series expansion of $(1+x)^{-1}$ is

$$
=1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots \cdots
$$

Hence the other Maclaurin series are:
a) for $(1+2 x)^{-1}$,

$$
\begin{equation*}
1-2 x+4 x^{2} \cdots+(-1)^{n} 2^{n} x^{n} \cdots \tag{2marks}
\end{equation*}
$$

b) for $(2+x)^{-1}=2^{-1}(1+x / 2)^{-1}$,

$$
\frac{1}{2}-\frac{1}{4} x+\frac{1}{8} x^{2}+\cdots+(-1)^{n} \frac{1}{2^{n+1}} x^{n+1}+\cdots \quad(3 \text { marks })
$$

c) for $\left(1+x^{2}\right)^{-1}$,

$$
1-x^{2}+x^{4}+\cdots(-1)^{n} x^{2 n}+\cdots \quad(3 \text { marks })
$$

d) The Maclaurin series of $g(x)=\left(1+x^{2}\right)^{-1}$ is

$$
g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{g^{n}(0)}{n!} x^{n}+\cdots
$$

So comparing coefficients of x^{n} we see that

$$
g^{(n)}(0)=\begin{array}{ll}
0 & \text { if } n \text { is odd, } \\
(-1)^{n} n! & \text { if } n \text { is even. } \quad ~(5 \text { marks }) ~
\end{array}
$$

$[2+2+3+3+5=15$ marks $]$
12.
a) The radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists. In this case $\left|a_{n} / a_{n+1}\right|=(n+1) /(n+2)$, which converges to 1 . So the radius of convergence is 1 . (4 marks)
At $R=1$ the series becomes

$$
\sum_{n=0}^{\infty}(n+1)
$$

which is divergent as the terms are not tending to 0 . At $R=-1$ the series becomes

$$
\sum_{n=1}^{\infty}(-1)^{n}(n+1)
$$

which again diverges as the terms are not converging to 0
b) In this case $a_{n}=4^{-n}(n+1)^{-1}$, so $\left|a_{n} / a_{n+1}\right|=4(n+2) /(n+1)$, which tends to 4 as $n \rightarrow \infty$. Hence $R=4$. (4 marks)
At $R=4$ the series becomes

$$
\sum_{n=0}^{\infty}(n+1)^{-1}=\sum_{n=1}^{\infty} n^{-1}
$$

which diverges. At $R=-4$ the series becomes

$$
\sum_{n=0}^{\infty}(-1)^{n}(n+1)^{-1}=\sum_{n=1}^{\infty}(-1)^{n} n^{-1}
$$

which converges as it is an alternating series and $1 / n$ decreases to 0 as $n \rightarrow \infty$ (5 marks)
$[4+2+4+5=15$ marks $]$
13. For $f(x)=x^{3}+2 x^{2}+x-2, f^{\prime}(x)=3 x^{2}+4 x+1=(3 x+1)(x+1)=0 \Leftrightarrow$ $x=-1$ or $x=-1 / 3$. Now $3 x+1$ and $x+1$ have the same sign if $x<-1$ or $x>-1 / 3$, and opposite signs if $-1<x<-1 / 3$. So f is increasing on each of the intervals $(-\infty,-1)$ and $(-1 / 3, \infty)$, and decreasing on $(-1,-1 / 3)$. We have

$$
f(-1)=-2, \quad f(-1 / 3)=-58 / 27, \quad f(0)=-2, \quad f(1)=2
$$

So $f<0$ on $(-\infty, 0), f>0$ on $(1, \infty)$ and there is just one zero of f, which is in $(0,1)$. (6 marks)

The Newton-Raphson formula becomes

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{x_{n}^{3}+2 x_{n}^{2}+x_{n}-2}{3 x_{n}^{2}+4 x_{n}+1}= \tag{3marks}
\end{equation*}
$$

Hence

$$
\begin{array}{ccc}
x_{1}=1-\frac{2}{8}=\frac{3}{4}, & f\left(x_{1}\right)=0.296875 & (1 \text { mark }) \\
x_{2}=0.69780220, & f\left(x_{2}\right)=0.01437376 & (2 \mathrm{mark}) \\
x_{3}=0.69562448, & f\left(x_{3}\right)=0.00002 & (3 \mathrm{marks}) \\
{[6+3+1+2+3=15 \text { marks }]} &
\end{array}
$$

14. For horizontal asymptotes:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{2-x}=0 \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(x+(2-x)^{-1}\right)=+\infty
\end{gathered}
$$

So $y=0$ is a horizontal asymptote (although only at $-\infty$). (2 marks)
For vertical asymptotes: the only possible asymptote is where $x-2=0$, that is, where $x=2$. We have

$$
\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2-}\left(x+\frac{1}{2}\right)=\frac{5}{2}, \quad \lim _{x \rightarrow 2+}\left(x+\frac{1}{2-x}\right)=-\infty
$$

So $x=2$ is a vertical asymptote. (1 mark)
For points of continuity: the only possible discontinuities are at 2 and 0 . 2 is certainly a discontinuity, because it is a vertical asymptote. 0 is not a discontinuity because $f(0-)=\frac{1}{2}=f(0+)=f(0) . \quad(2$ marks)

We have

$$
f^{\prime}(x)= \begin{cases}(2-x)^{-2} & \text { if } x \in(-\infty, 0) \\ 1 & \text { if } x \in(0,2) \\ 1+(2-x)^{-2} & \text { if } x \in(2, \infty)\end{cases}
$$

[2 marks]
The function is not differentiable at 2 because it is not continuous there. The only other point that needs checking is 0 . There the function is not differentiable because the left derivative is $\frac{1}{4}$ and the right derivative is 1 . (2 marks)

Now $f^{\prime}(x)>0$ on each of the intervals $(-\infty, 0),(0,2)$ and $(2, \infty)$ So there are no stationary points. The function f is increasing on each of the intervals $(-\infty, 0],[0,2)$ and $(2, \infty) \quad(2$ marks $)$

For zeros: since $(2-x)^{-1} \neq 0$ for any x, and $x+\frac{1}{2}>0$ for $x \in(0,2)$. So the only possible zero is on $(2, \infty)$, when $x+(2-x)^{-1}=0$, that is, when $2 x-x^{2}+1=0$ and $x>2$, that is when $x^{2}-2 x-1=0$ and $x>2$. The zeros of $x^{2}-2 x-1$ are $1 \pm \sqrt{2}$. Since $1+\sqrt{2}>2$, and $1-\sqrt{2}<2$, the unique zero of f is $1+\sqrt{2} \quad$ (2 mark)

The graph of f is as shown, wth $a=1+\sqrt{2}$.
 marks]
$[2+1+2+2+2+2+2+2=15$ marks $]$

15
a) We have $1+j=\sqrt{2} e^{j \pi / 4}$. So
$(1+j)^{27}=2^{13} \sqrt{2} e^{j(27 \pi / 4)}=8192 \sqrt{2} e^{j(3 \pi / 4)}=8192 \sqrt{2}\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} j\right)=8192(-1+j)$.
[4 marks]
b) Write $z=r \cos \theta+j r \sin \theta$. The polar form of -16 is $16(\cos (\pi)+j \sin (\pi))$.

De Moivre's Theorem gives

$$
r^{4}(\cos 4 \theta+j \sin 4 \theta)=16(\cos (\pi)+j \sin (\pi))
$$

So $\left.r^{4}=16, \cos 4 \theta=\cos (\pi), \sin 4 \theta=\sin (\pi)\right)$. So $r=2$ and $4 \theta=\pi+2 n \pi$, any integer n. [7 marks]

Distinct values of z are given by taking $n=0,1,2,3$ that is, $\theta=\pi / 4,3 \pi / 4$, $5 \pi / 4,7 \pi / 4$. So the solutions to $z^{4}=-16$ are

$$
\begin{gathered}
z=2 \cos (\pi / 4)+2 j \sin (\pi / 4)=\sqrt{2}(1+j) \\
z=2 \cos (3 \pi / 4)+2 j \sin (3 \pi / 4)=\sqrt{2}(-1+j) \\
z=2 \cos (5 \pi / 4)+2 j \sin (5 \pi / 4)=\sqrt{2}(-1-j) \\
z=2 \cos (7 \pi / 4)+2 j \sin (7 p i / 4)=\sqrt{2}(1-j)
\end{gathered}
$$

[4 marks]
$[4+7+4=15$ marks $]$

