All questions are similar to homework problems.

MATH191 Solutions January 2007 Section A

1. The maximal domain is $(-1, \infty)$ and the range is \mathbb{R} (1 mark each). The graph is shown below (1 mark). It crosses the x-axis at $x=0$ (1 mark).

$[1+1+1+1=4$ marks $]$
2. We have $f(0)=2, f^{\prime}(x)=\frac{1}{2}(4+x)^{-1 / 2}$, so $f^{\prime}(0)=1 / 4$, and $f^{\prime \prime}(x)=$ $-\frac{1}{4}(4+x)^{-3 / 2}$, so $f^{\prime \prime}(0)=-1 / 32$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$.

Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=2+x / 4-x^{2} / 64+\cdots
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0) .1$ mark for not saying $f(x)=2+x / 4-x^{2} / 64$).
$[3+1+1=5$ marks $]$
3.
a) $r=5$ (1 mark). $\theta=\pi(2$ marks $)$.
b) $x=2 \cos (3 \pi / 4)=2(-1 / \sqrt{2})=-\sqrt{2} . \quad y=2 \sin (\pi / 4)=2 / \sqrt{2}=\sqrt{2}$. mark each)

Subtract one mark for each answer not given exactly.
$[3+2=5$ marks $]$
4.

$$
\begin{aligned}
\int_{1}^{2} e^{-x}+x^{1 / 2} d x & =\left[-e^{-x}+\frac{2}{3} x^{3 / 2}\right]_{1}^{2} \quad(3 \text { marks }) \\
& =\left(e^{-1}-e^{-2}\right)+\frac{2}{3}(2 \sqrt{2}-1) \quad(2 \text { marks })
\end{aligned}
$$

[$3+2=5$ marks]

5. Differentiating the equation with respect to x gives

$$
2 x-\sin y \frac{d y}{d x}=0 \quad(2 \text { marks })
$$

Hence

$$
\frac{d y}{d x}=\frac{2 x}{\sin y} \quad(2 \text { marks }) .
$$

Thus $\frac{d y}{d x}$ is equal to $2 \sqrt{2} / \sqrt{3}=2 \sqrt{2 / 3}$ when $(x, y)=(1 / \sqrt{2}, \pi / 3)$. (2 marks). The equation of the tangent at this point is therefore

$$
y=2 \sqrt{2 / 3} x-2 / \sqrt{3}+\pi / 3 \quad(2 \text { marks })
$$

$[2+2+2+2=8$ marks $]$
6.
a) By the product rule and chain rule,

$$
\frac{d}{d x}\left(x^{2} \sin 2 x\right)=2 x \sin (2 x)+2 x^{2} \cos (2 x) . \quad(2 \text { marks })
$$

b) By the chain rule,

$$
\frac{d}{d x}\left(x^{2}+x-1\right)^{10}=10(2 x+1)\left(x^{2}+x-1\right)^{9} \quad(3 \text { marks }) .
$$

c) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{e^{x}}{x^{2}+1}\right)=\frac{e^{x}\left(x^{2}+1\right)-2 x e^{x}}{\left(x^{2}+1\right)^{2}} . \quad(2 \text { marks })
$$

$[2+3+2=7$ marks $]$
7. $f^{\prime}(x)=e^{x}-1$. Stationary points are given by solutions of $f^{\prime}(x)=0$, So there is exactly one stationary point, namely $x=0 . \quad$ (3 marks)

To determine its nature, $f^{\prime \prime}(x)=e^{x}$: so $f^{\prime \prime}(0)=1>0$, and 0 is a local minimum. (2 marks)
$[3+2=5$ marks $]$
8.

$$
\begin{aligned}
z_{1}+z_{2} & =5 \quad(1 \text { mark }) \\
z_{1}-z_{2} & =1+2 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(3+j)(2-j)=6-j-j^{2}=7-j \quad(2 \text { marks }) \\
z_{1} / z_{2} & =\frac{(3+j)(2+j)}{(2-j)(2+j)}=\frac{5+5 j}{5}=1+j \quad(2 \text { marks }) .
\end{aligned}
$$

$[1+1+2+2=6$ marks $]$
9. $\sin ^{-1}(-1 / \sqrt{2})=-\pi / 4 \quad$ (1 mark)

The general solution of $\sin \theta=\frac{-1}{\sqrt{2}}$ is

$$
\theta=-\pi / 4+2 n \pi \text { or } \theta=-3 \pi / 4+2 n \pi
$$

for any $n \in \mathbb{Z} . \quad$ (3 marks)
$[1+3=4$ marks $]$
10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =3 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =\mathbf{i}+6 \mathbf{j}+2 \mathbf{k} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{4^{2}+1^{2}+3^{2}}=\sqrt{14} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{1^{2}+5^{2}+1^{2}}=\sqrt{27} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =2-5+3=0 \quad(1 \text { mark }) .
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
$[1+1+1+1+1+1=6$ marks $]$

Section B

11. The Maclaurin series expansion of e^{x} is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \quad(2 \text { marks })
$$

Hence
a)

$$
e^{x}-1=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \cdots \quad(2 \text { marks })
$$

b)

$$
x e^{x}=x+x^{2}+\frac{x^{3}}{2!}+\frac{x^{4}}{3!}+\cdots \quad(2 \text { marks })
$$

c)

$$
e^{-x}=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3!}+\frac{x^{4}}{3!}+\cdots \quad(3 \text { marks })
$$

d)

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\cdots \quad(3 \text { marks })
$$

e)

$$
\begin{gathered}
\frac{e^{x}-1}{x}-e^{x}=\frac{x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots}{x}-\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right) \\
=1+\frac{x}{2}+\frac{x^{2}}{6}+\frac{x^{3}}{24}+\cdots-\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right) \\
=-\frac{x}{2}-\frac{x^{2}}{3}-\frac{x^{3}}{8} \cdots
\end{gathered}
$$

So $f(0.1)=-0.05-0.003333 . .-0.000125 . .=-0.053458 . .=-0.0535$ to 4 decimal places. (3 marks)
$[2+1+1+2+2+4+3=15$ marks $]$
12.
a) The radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|,
$$

provided this limit exists. In this case $\left|a_{n} / a_{n+1}\right|=(n+1)^{2} / n^{2}$, which converges to 1 . So the radius of convergence is 1 . (4 marks)
At $R=1$ the series becomes

$$
\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which is a standard convergent series. At $R=-1$ the series becomes

$$
\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}
$$

Since the terms of the series are in modulus the same as for $R=1$, this series is also convergent.
(5 marks)
b) In this case $a_{n}=1 / 2 \sqrt{n}$, so $\left|a_{n} / a_{n+1}\right|=\sqrt{(n+1) / n}$, which tends to 1 as $n \rightarrow \infty$. Hence $R=1$.
(4 marks)

At $R=1$ the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}}
$$

which diverges. (2 marks)
$[4+5+4+2=15$ marks $]$
13. $f^{\prime}(x)=3 x^{2}-3=0 \Leftrightarrow x= \pm 1$. Since $f^{\prime}(x)=3(x-1)(x+1), f^{\prime}(x)>0$ if $x<-1$ or $x>1$, and $f^{\prime}(x)<0$ if $x \in(-1,1)$. So f is increasing on each of the intervals $(-\infty,-1)$ and $(1, \infty)$, and decreasing on $(-1,1)$. We have

$$
\begin{gathered}
f(-2)=-8+6-1=-3, \quad f(-1)=3, \quad f(0)=1, \\
f\left(\frac{1}{2}\right)=-\frac{3}{8}, \quad f(1)=-1, \quad f(2)=3
\end{gathered}
$$

So f must change sign on each of the intervals $(-2,-1),\left(0, \frac{1}{2}\right),(1,2)$, that is, have zeros in each of these intervals. (6 marks)

The Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-3 x_{n}+1}{3 x_{n}^{2}-3}=\frac{2 x_{n}^{3}-1}{3 x_{n}^{2}-3} \quad(3 \text { marks })
$$

Hence

$$
\begin{gathered}
x_{1}=\frac{2 x_{0}^{3}-1}{3 x_{0}^{2}-3}=\frac{1}{3}, \quad(1 \text { mark }) \\
x_{2}=\frac{2 x_{1}^{3}-1}{3 x_{1}^{2}-3}=\frac{25}{72}=0.347222222, \quad(1 \text { mark }) \\
x_{3}=\frac{2 x_{2}^{3}-1}{3 x_{2}^{2}-3}=\frac{170999}{492372}=0.347296353, \quad(2 \text { marks }) \\
f\left(x_{3}\right)=0.000000006 . \quad(2 \text { marks })
\end{gathered}
$$

$[6+3+1+1+2+2=15$ marks $]$
14. For horizontal asymptotes:

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{1+x}=0, \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{3}{1+x}+\frac{1}{4}-x\right)=\frac{1}{4}-\infty=-\infty .
\end{gathered}
$$

So $y=0$ is a horizontal asymptote (although only at $-\infty$). (2 marks)
For vertical asymptotes: the only possible asymptote is where $x+1=0$, that is, where $x=-1$. We have

$$
\lim _{x \rightarrow(-1)-} f(x)=\lim _{x \rightarrow(-1)-} \frac{1}{1+x}=-\infty
$$

So $x=-1$ is a vertical asymptote, although

$$
\lim _{x \rightarrow(-1)+} f(x)=\lim _{x \rightarrow(-1)+} e^{x}=e^{-1} \quad \quad(2 \text { marks })
$$

For points of continuity: the only possible discontinuities are at -1 and 0 . -1 is certainly a discontinuity, because it is a vertical asymptote. 0 is a point of continuity, because $e^{0}=\frac{1}{1}=1$. (2 marks)

For $x \in(0, \infty)$ we have

$$
f(x)=\frac{\frac{3}{4}}{1+x}+\frac{1}{4}-\frac{1}{4} x
$$

So we have

$$
f^{\prime}(x)= \begin{cases}-\frac{1}{(1+x)^{2}} & \text { if } x \in(-\infty,-1) \\ e^{x} & \text { if } x \in(-1,0) \\ -\frac{1}{4}-\frac{\frac{3}{4}}{(1+x)^{2}} & \text { if } x \in(0, \infty)\end{cases}
$$

[2 marks]
The function is not differentiable at -1 because it is not continuous there. The only other point that needs checking is 0 . There the function is not differentiable because the left derivative is $e^{0}=1$ and the right derivative is -1 . (2 marks)

So

$$
f^{\prime}(x) \begin{cases}<0 & \text { if } x \in(-\infty,-1) \\ >0 & \text { if } x \in(-1,0) \\ <0 & \text { if } x \in(0, \infty)\end{cases}
$$

So there are no stationary points. The function f is decreasing on each of the intervals $(-\infty,-1)$ and $[0, \infty)$ and increasing on $[-1,0]$. (2 marks)

For zeros: since $\frac{1}{1+x} \neq 0$ for any x, and $e^{x}>0$ for any x, the only possible zero is on $(0, \infty)$, when $1-\frac{1}{4} x^{2}=0$, that is, when $x=2 . \quad$ (1 mark)

The graph of f is as shown.

[2 marks]
$[2+2+2+2+2+2+1+2=15$ marks $]$

15 Write $z=r \cos \theta+j r \sin \theta$.
a) The polar form of $4 j$ is $4(\cos (\pi / 2)+j \sin (\pi / 2))$. De Moivre's Theorem gives

$$
r^{2}(\cos 2 \theta+j \sin 2 \theta)=4(\cos (\pi / 2)+j \sin (\pi / 2))
$$

So $r^{2}=4, \cos 2 \theta=\cos (\pi / 2), \sin 2 \theta=\sin (\pi / 2)$. So $r=2$ and $2 \theta=\pi / 2+2 n \pi$, any integer n. So $\theta=\pi / 4+n \pi$, any integer n. So the possible values for z are

$$
z=2(\cos (\pi / 4)+j \sin (\pi / 4))=\sqrt{2}+\sqrt{2} j
$$

and

$$
z=2(\cos (5 \pi / 4)+j \sin (4 \pi / 4))=-\sqrt{2}-\sqrt{2} j
$$

[6 marks]
b) The polar form of $-8 j$ is $8(\cos (-\pi / 2)+j \sin (-\pi / 2))$. De Moivre's Theorem gives

$$
r^{3}(\cos 3 \theta+j \sin 3 \theta)=8(\cos (-\pi / 2)+j \sin (-\pi / 2))
$$

So $\left.r^{3}=8, \cos 3 \theta=\cos (-\pi / 2), \sin 3 \theta=\sin (-\pi / 2)\right)$. So $r=2$ and $3 \theta=$ $-\pi / 2+2 n \pi$, any integer n. Distinct values of z are given by taking $n=0,1,2$, that is, $\theta=-\pi / 6, \pi / 2,7 \pi / 6$. So the solutions to $z^{3}=-8 j$ are

$$
\begin{gathered}
z=2 \cos (-\pi / 6)+2 j \sin (-\pi / 6)=\sqrt{3}-j \\
z=2 \cos (\pi / 2)+2 j \sin (\pi / 2)=2 j \\
z=2 \cos (7 \pi / 6)+2 j \sin (7 \pi / 6)=-\sqrt{3}-j
\end{gathered}
$$

[9 marks]
$[6+9=15$ marks $]$

