MATH191 Exam January 2005, Solutions

All questions are standard homework examples

1. The maximal domain is $(0, \infty)$ and the range is \mathbb{R} (1 mark each).

The graph is shown below (1 mark). It crosses the x-axis at $x=1$ (1 mark).

2. We have $f(0)=2, f^{\prime}(x)=\frac{1}{2}(4+x)^{-1 / 2}$, so $f^{\prime}(0)=1 / 4$, and $f^{\prime \prime}(x)=-\frac{1}{4}(4+$ $x)^{-3 / 2}$, so $f^{\prime \prime}(0)=-1 / 32$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$.

Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=2+x / 4-x^{2} / 64+\cdots .
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0) .1$ mark for not saying $\left.f(x)=2+x / 4-x^{2} / 64\right)$.
3.
a) $r=\sqrt{4+4}=\sqrt{8}$ (1 mark). $\tan \theta=2 /(-2)=-1$, so since $x<0$ we have $\theta=\tan ^{-1}(-1)+\pi=3 \pi / 4$ (3 marks).
b) $x=2 \cos (7 \pi / 6)=2(-\sqrt{3} / 2)=-\sqrt{3} . y=2 \sin (7 \pi / 6)=2(-1 / 2)=-1$. (1 mark each)

Subtract one mark for each answer not given exactly.
4.

$$
\begin{aligned}
\int_{1}^{2} e^{-2 x}+x^{-2} d x & =\left[-\frac{e^{-2 x}}{2}-x^{-1}\right]_{1}^{2} \quad(3 \text { marks }) \\
& =\left(e^{-2}-e^{-4}\right) / 2-\frac{1}{2}+1 \\
& =0.559 \quad(2 \text { marks })
\end{aligned}
$$

to three decimal places.
5. Differentiating the equation with respect to x gives

$$
3 x^{2}+2 x y+x^{2} \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=0 \quad(3 \text { marks })
$$

Hence

$$
\frac{d y}{d x}=-\frac{3 x^{2}+2 x y}{x^{2}+3 y^{2}} \quad(2 \text { marks })
$$

Thus $\frac{d y}{d x}$ is equal to -3 when $(x, y)=(1,0)$. (1 mark).
The equation of the tangent at this point is therefore

$$
y=-3 x+3 \quad(2 \text { marks })
$$

6.

a) By the chain rule,

$$
\frac{d}{d x} \ln \left(1+x^{2}\right)=\frac{2 x}{1+x^{2}} . \quad(2 \text { marks })
$$

b) By the product rule,

$$
\frac{d}{d x}\left(\left(1+x^{2}\right) \ln x\right)=\frac{1+x^{2}}{x}+2 x \ln x \quad(2 \text { marks })
$$

c) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{\cosh x}{x}\right)=\frac{x \sinh x-\cosh x}{x^{2}} . \quad(2 \text { marks })
$$

7. $f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)$. Stationary points are given by solutions of $f^{\prime}(x)=0$, i.e. there are exactly two stationary points, namely $x=0$ and $x=2$. (3 marks, one for the equation $3 x(x-2)=0$, and 1 for each solution.)

To determine their nature, $f^{\prime \prime}(x)=6 x-6$: so $f^{\prime \prime}(2)>0$, and 2 is a local minimum; while $f^{\prime \prime}(0)<0$, and 0 is a local maximum. (2 marks, 1 for each stationary point).
8.

$$
\begin{aligned}
z_{1}+z_{2} & =3-4 j \quad(1 \text { mark }) \\
z_{1}-z_{2} & =-1+2 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(1-j)(2-3 j)=2-3 j-2 j+3 j^{2}=-1-5 j \quad(2 \text { marks }) \\
z_{1} / z_{2} & =\frac{(1-j)(2+3 j)}{(2-3 j)(2+3 j)}=\frac{5+j}{13} \quad(2 \text { marks })
\end{aligned}
$$

9. One solution is $\theta_{0}=\tan ^{-1}(-2)=-1.107$ to three decimal places (1 mark). The general solution of $\tan \theta=-2$ is

$$
\theta=\theta_{0}+n \pi \quad(n \in \mathbb{Z}) \quad(3 \text { marks }) .
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =3 \mathbf{i}-3 \mathbf{j}-3 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =-\mathbf{i}-\mathbf{j}+5 \mathbf{k} \quad(1 \mathrm{mark}) \\
|\mathbf{a}| & =\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{2^{2}+1^{2}+4^{2}}=\sqrt{21} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =2+2-4=0 \quad(1 \text { mark }) .
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
11. The Maclaurin series expansion of $\cos x$ is

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \quad(2 \text { marks })
$$

Hence
a)

$$
x^{2} \cos x=x^{2}-\frac{x^{4}}{2!}+\cdots \quad(2 \text { marks })
$$

b)

$$
\cos \left(x^{2}\right)=1-\frac{x^{4}}{2!}+\cdots \quad(2 \text { marks })
$$

c)

$$
\cos (2 x)=1-\frac{4 x^{2}}{2!}+\frac{16 x^{4}}{4!}-\cdots=1-2 x^{2}+\frac{2 x^{4}}{3}-\cdots \quad(3 \text { marks })
$$

d)

$$
\begin{aligned}
\cos ^{2} x & =(1+\cos (2 x)) / 2 \\
& =\left(2-2 x^{2}+2 x^{4} / 3+\cdots\right) / 2 \\
& =1-x^{2}+\frac{x^{4}}{3}+\cdots \quad(4 \text { marks }) .
\end{aligned}
$$

e)

$$
\sin ^{2} x=1-\cos ^{2} x=x^{2}-\frac{x^{4}}{3}+\cdots \quad(2 \text { marks })
$$

12. The radius of the convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|,
$$

provided this limit exists. In this case $a_{n}=(-1)^{n} /\left(n^{2}+1\right)$, so $\left|a_{n} / a_{n+1}\right|=((n+$ $\left.1)^{2}+1\right) /\left(n^{2}+1\right)$, which tends to 1 as $n \rightarrow \infty$. Hence $R=1$. (8 marks).

When $x=1$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$. (3 marks)
When $x=-1$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

which converges (comparison with $\sum \frac{1}{n^{2}}$, whose convergence is a standard result). (3 marks).

Hence the series converges if and only if $-1 \leq x \leq 1$. (1 mark).
13. The graphs are as shown:

(6 marks).
Since x^{3} increases from $-\infty$ to ∞, while $-e^{x}$ decreases from 0 to $-\infty$, there is exactly one value of x for which $x^{3}=-e^{x}$. (2 marks).

Since $f(-1)=-1+1 / e<0$ and $f(0)=0+1>0$, the solution to $f(x)=0$ must lie in $[-1,0]$. (1 mark).

We have $f^{\prime}(x)=3 x^{2}+e^{x}$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}+e^{x_{n}}}{3 x_{n}^{2}+e^{x_{n}}} \quad(3 \text { marks }) .
$$

Hence

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{x_{0}^{3}+e^{x_{0}}}{3 x_{0}^{2}+e^{x_{0}}}=-0.778097 . \\
& x_{2}=x_{1}-\frac{x_{1}^{3}+e^{x_{1}}}{3 x_{1}^{2}+e^{x_{1}}}=-0.772908 . \\
& x_{3}=x_{2}-\frac{x_{2}^{3}+e^{x_{2}}}{3 x_{2}^{2}+e^{x_{2}}}=-0.772883 .
\end{aligned}
$$

(1 mark each).
14. For $x<0$ we have $f(x)=2 x^{2}+x-3=(x-1)(2 x+3)$, which has a zero at $x=-3 / 2$. The derivative is $f^{\prime}(x)=4 x+1$, so there is a stationary point at $x=-1 / 4$. Since $f^{\prime \prime}(x)=4$, the stationary point is a local minimum. $f(x)=-3 \frac{1}{8}$ at the stationary point. The gradient of $2 x^{2}+x-3$ at $x=0$ is 1 .

For $x \geq 0$ we have $f(x)=3 /(x-1)$, which has no zeros and is equal to -3 at $x=0$, and tends to 0 as $x \rightarrow \infty . f^{\prime}(x)=-3 /(x-1)^{2}$, so there are no stationary points, and $f(x)$ is decreasing in $(0,1) \cup(1, \infty)$; the gradient is -3 at $x=0$. There is a vertical asymptote at $x=1$.

The graph of $f(x)$ is therefore

(12 marks).
$f(x)$ is not continuous at $x=1$, since 1 is not in its maximal domain. (1 mark).
$f(x)$ is not differentiable at $x=1$ (not in maximal domain), and at $x=0$ (no well-defined tangent to the graph at this point). (2 marks).
15. Let $z=\cos \theta+j \sin \theta$, so by de Moivre's theorem

$$
\begin{aligned}
z^{n} & =\cos n \theta+j \sin n \theta \\
z^{-n} & =\cos n \theta-j \sin n \theta
\end{aligned}
$$

Thus $z^{n}-z^{-n}=2 j \sin n \theta$. (4 marks)
In particular, $2 j \sin \theta=z-z^{-1}$ so

$$
\begin{aligned}
8 j^{3} \sin ^{3} \theta & =\left(z-z^{-1}\right)^{3} \\
& =z^{3}-3 z+3 z^{-1}-z^{-3} \\
& =\left(z^{3}-z^{-3}\right)-3\left(z-z^{-1}\right) \\
& =2 j \sin 3 \theta-6 j \sin \theta .
\end{aligned}
$$

Thus, since $j^{3}=-j$,

$$
4 \sin ^{3} \theta=-\sin 3 \theta+3 \sin \theta
$$

so $a=-1$ and $b=3$. (5 marks)
So

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{3} x d x & =\frac{1}{4} \int_{0}^{\pi}(3 \sin x-\sin (3 x)) d x \\
& =\frac{1}{4}\left[\frac{\cos (3 x)}{3}-3 \cos x\right]_{0}^{\pi} \\
& =\frac{1}{4}\left(\frac{\cos (3 \pi)-\cos (0)}{3}-3(\cos (\pi)-\cos (0))\right) \\
& =\frac{1}{4}\left(\frac{-2}{3}+6\right)=4 / 3
\end{aligned}
$$

(6 marks)

