MATH191: Problem Sheet 9

Due Monday 6th December

1. Let $\mathbf{a}=(1,0,-2), \mathbf{b}=(-1,2,-1)$, and $\mathbf{c}=(1,-1,-3)$. Calculate the following quantities: $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{c}, 2 \mathbf{a}-2 \mathbf{b}+3 \mathbf{c},|\mathbf{a}|,|\mathbf{b}|,|\mathbf{a}-\mathbf{c}|, \mathbf{a} \cdot \mathbf{b}$, and $\mathbf{b} \cdot(\mathbf{a}-\mathbf{c})$. Find the angle between \mathbf{a} and \mathbf{b}, and the angle between \mathbf{b} and $\mathbf{a}-\mathbf{c}$, giving each of the two answers in radians to three decimal places.
2. Let $z_{1}=1+2 j$ and $z_{2}=1-3 j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and $\frac{z_{1}}{z_{2}}$. Write down the complex conjugates $\overline{z_{1}}$ and $\overline{z_{2}}$, and calculate $\overline{z_{1}} \overline{z_{2}}$ and $\frac{\overline{z_{1}}}{\overline{z_{2}}}$ any way you like.
3. Determine the modulus and argument of the following complex numbers z, and hence write them in the form $z=r e^{j \theta}$. Calculate the arguments to three decimal places if you can't write them down exactly (e.g. as $\pi / 4$). Keep the moduli in the form \sqrt{n} if they are not whole numbers.
a) $2+j$;
b) -3 ;
c) $1+j$;
d) $-3 j$;
e) $-3-4 j$;
f) $4 j$;
g) $-1+j$.
(Hint: remember that the argument of $z=x+j y$ can't be calculated simply as $\theta=\tan ^{-1}(y / x):$ you have to consider the signs of x and y.)
4. Calculate the values of $(1+j)^{n}$ for $n \leq 8$.
5. Find all solutions of the following equations in the form $z=a+b j$ Give a and b exactly, whenever possible.

$$
\text { a) } z^{2}=-1-\sqrt{3} j ; \quad \text { b) } z^{3}=64 j .
$$

I will collect solutions at the lecture on Monday 6th December. Any solutions which are not handed in then, or by 5 pm that day in the envelope outside Office 516 in the Maths Building will not be marked. (My office, 515, is reached through 516.)

