MATH191: Problem Sheet 6

Due Monday 15th November

1. Find the Maclaurin series of:

$$
\text { a) } f(x)=\cos 2 x ; \quad \text { b) } f(x)=\cos ^{2} x
$$

Think before doing b): there is a trick which helps.
2. Use L'Hôpital's rule to evaluate the following limits:
a) $\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x+1}$;
b) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{2 x}}{x}$;
c) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.
3. Use the definitions

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

to prove the identity

$$
\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y) .
$$

4. Sketch the graphs of
a) $f(x)=e^{-x / 2}$;
b) $f(x)=e^{-x^{2} / 4}$,
indicating clearly any crossings of axes, and any horizontal or vertical asymptotes.

I will collect solutions at the lecture on Monday 15th November. Any solutions which are not handed in then, or by 5 pm that day in the envelope outside Office 516 in the Maths Building will not be marked. (My office, 515, is reached through 516.)

