MATH191: Problem Sheet 4

Due Monday 25th October

1. For each of the following functions $f(x)$, evaluate

$$
\lim _{x \rightarrow+\infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x),
$$

whenever it is possible to evaluate them.
a) $f(x)=x^{3}-3 x^{2}+x-1$;
b) $f(x)=\frac{x^{3}+x^{2}}{x^{2}-2}$;
c) $f(x)=\frac{3 x^{2}-2 x+3}{2 x^{2}-3}$;
d) $f(x)=\frac{5 x^{2}-2 x+3}{x^{3}+4 x^{2}-1}$;
e) $f(x)=\cos x$;
f) $f(x)=\frac{\cos x}{x}$.
2. Differentiate the following functions:
a) $x^{3}+2 x^{2}-3 x+2$;
b) $x^{4} \sin x$;
c) $2 \sqrt{x}+\cos x$;
d) $\frac{1}{\sqrt{1+x}}$;
e) $\frac{\sin x}{x^{2}}$;
f) $\cos \left(x^{2}+1\right)$;
g) $\frac{1}{(2+3 x)^{2}}$.

Don't guess! Use the rules of differentiation carefully as I did in the lectures. In parts c) and d), remember that $\sqrt{x}=x^{1 / 2}$, and $\frac{1}{\sqrt{1+x}}=(1+x)^{-1 / 2}$.
3. Find the equation of the tangent to the graph $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ in each of the following cases:
a) $f(x)=x^{2}, \quad\left(x_{0}, y_{0}\right)=(3,9)$;
b) $f(x)=x^{3}, \quad\left(x_{0}, y_{0}\right)=(-1,-1)$.
c) $f(x)=x^{2} \cos x, \quad\left(x_{0}, y_{0}\right)=(0,0)$;
d) $f(x)=\frac{\sin x}{x}, \quad\left(x_{0}, y_{0}\right)=(\pi, 0)$.
4. Use the binomial theorem to expand the following:
a) $(1+x)^{4}$;
b) $(1+2 x)^{4}$;
c) $(1-x)^{4}$.

I will collect solutions at the lecture on Monday 25th October. Any solutions which are not handed in then, or by 5 pm that day in the envelope outside Office 516 in the Maths Building will not be marked. (My office, 515, is reached through 516.)

