MATH191: Problem Sheet 2

Due Monday 11th October

1. Determine the inverse function $f^{-1}(x)$ of the rational function

$$
f(x)=\frac{2 x}{x+1}
$$

2. State whether each of the following functions is increasing, decreasing, or neither (on their maximal domains):
a) $f(x)=2 x+1$;
b) $f(x)=(x+1)^{2}$;
c) $f(x)=x^{3}-4$.
3. Determine whether each of the following functions is even, odd, or neither:

$$
\text { a) } \sin \left(x^{3}\right) ; \quad \text { b) } \frac{\cos (x)}{x}
$$

4. Evaluate the following. You should give exact answers in terms of $\pi, \sqrt{2}$, etc.: do not evaluate to any number of decimal places.
a) $\sin \left(-\frac{\pi}{3}\right)$;
b) $\cos ^{-1}(0)$;
c) $\tan ^{-1}(\sqrt{3})$.
5. Find the general solutions of the following equations:
a) $\tan \theta=-1$;
b) $\cos \theta=\frac{2}{5}$;
c) $\sin \theta=\frac{1}{2}$.

In part b), you should give your answer to four decimal places. In parts a) and c), you should give exact answers.
6. Use the formulae for $\sin (A+B), \sin (2 \theta)$ and $\cos (2 \theta)$ to show that

$$
\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta
$$

Check the result for $\theta=\pi / 2$ and $\theta=\pi / 6$.

I will collect solutions at the lecture on Monday 11th October. Any solutions which are not handed in then, or by 5 pm that day in the envelope outside Office 516 in the Maths Building will not be marked. (My office, 515, is reached through 516.)

