MATH191: Practice Sheet 7

1. The equation $x^{2}-y^{2}=1$ describes a hyperbola. Calculate the slopes of the tangents to this hyperbola at $(x, y)=(2, \sqrt{3})$ and at $(x, y)=(2,-\sqrt{3})$.
2. Consider the curve defined by

$$
x^{2} y^{2}+2 x y^{3}-3 x+2 y=2 .
$$

Find an expression for $\frac{d y}{d x}$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(1,1)$.
3. Find and classify the stationary points of the following functions $f(x)$. In each case, sketch the graph of the function, indicating any crossings of the axes. You may not be able to give zeros of the function exactly.
a) $2 x^{3}-9 x^{2}-60 x+11$;
b) $x^{4}+4 x^{3}+4 x^{2}+2$;
c) $\ln (x)-x^{2}$.

Hint: In part $c)$, what is the maximal domain of $f(x)$?

