MATH191: Practice Sheet 5

1. Differentiate the following functions. There is no need to simplify your answers.
a) $2 x^{3}-5 x+1-2 \sin x$;
b) $x^{5 / 3}$;
c) $\left(1-x^{2}\right) \tan x$;
d) $\sqrt{2 x+3} \cos x$;
e) $\frac{x^{2}-3}{2 x}$;
f) $\frac{x^{2} \cos x}{\sqrt{x}-1}$;
g) $\cos (-3 x+2)$;
h) $\left(1-x^{2}\right)^{-3 / 2}$;
i) $\frac{\sin (2 x-1)}{x}$;
j) $\frac{\cos \left((1-2 x)^{2}\right)}{3 x+1}$.
2. Let $f(x)=x^{2}-5$ (so a solution to $f(x)=0$ is $x=\sqrt{5}$). Apply the NewtonRaphson method to $f(x)$, with a starting value $x_{0}=2$, to compute $f\left(x_{n}\right)$ and x_{n} for $0 \leq n \leq 3$. You should give each approximation to 6 decimal places. Check your answer by evaluating $\sqrt{5}$ on your calculator.
3. By sketching the graphs of $y=x^{3}$ and $y=1-x$ on the same axes, explain why the equation

$$
f(x)=x^{3}+x-1=0
$$

has exactly one solution which is in $(0,1)$
Use the Newton-Raphson formula with an initial guess $x_{0}=1$ to to compute $f\left(x_{n}\right)$ and x_{n} for $0 \leq n \leq 3$. You should give each approximation to 6 decimal places.

