MATH191: Practice Sheet 5

1. Differentiate the following functions. There is no need to simplify your answers.

a)
$$2x^3 - 5x + 1 - 2\sin x;$$
 b) $x^{5/3};$ c) $(1 - x^2)\tan x;$ d) $\sqrt{2x + 3}\cos x;$
e) $\frac{x^2 - 3}{2x};$ f) $\frac{x^2\cos x}{\sqrt{x} - 1};$ g) $\cos(-3x + 2);$ h) $(1 - x^2)^{-3/2};$
i) $\frac{\sin(2x - 1)}{x};$ j) $\frac{\cos((1 - 2x)^2)}{3x + 1}.$

2. Let $f(x) = x^2 - 5$ (so a solution to f(x) = 0 is $x = \sqrt{5}$). Apply the Newton-Raphson method to f(x), with a starting value $x_0 = 2$, to compute $f(x_n)$ and x_n for $0 \le n \le 3$. You should give each approximation to 6 decimal places. Check your answer by evaluating $\sqrt{5}$ on your calculator.

3. By sketching the graphs of $y = x^3$ and y = 1 - x on the same axes, explain why the equation

$$f(x) = x^3 + x - 1 = 0$$

has exactly one solution which is in (0,1)

Use the Newton-Raphson formula with an initial guess $x_0 = 1$ to to compute $f(x_n)$ and x_n for $0 \le n \le 3$. You should give each approximation to 6 decimal places.

