MATH191: Practice Sheet 4

1. For each of the following functions f(x), evaluate

 $\lim_{x \to +\infty} f(x) \qquad \text{and} \qquad \lim_{x \to -\infty} f(x),$

whenever it is possible to evaluate them. Answers of $+\infty$ and $-\infty$ are allowed in this question.

a)
$$f(x) = x^2 + 2x - 1;$$
 b) $f(x) = \frac{x^3 + 3x}{x^2 + 1};$ c) $f(x) = \frac{2x^2 + 3x + 1}{x^2 - 3};$
d) $f(x) = \frac{2x^2 + 3x + 1}{x^3 - 4x^2 + 1};$ e) $f(x) = \sin x;$ f) $f(x) = \frac{\sin 2x}{x}.$

2. Differentiate the following functions:

a)
$$2x^3 - 3x^2 + 2;$$
 b) $x^2 \cos x;$ c) $\frac{3}{\sqrt{x}};$ d) $\sqrt{1 + x};$
e) $\frac{2x^2 + 1}{\cos x};$ f) $\sin(3x^2 - 2);$ g) $\frac{1}{(2x - 1)^3}.$

Hints: Don't guess. Use the rules of differentiation carefully as I did in the lectures. In parts c) and d), remember that $\frac{1}{\sqrt{x}} = x^{-1/2}$, and $\sqrt{1+x} = (1+x)^{1/2}$.

3. Find the equation of the tangent to the graph y = f(x) at the point (x_0, y_0) in each of the following cases:

a)
$$f(x) = x^2$$
, $(x_0, y_0) = (-2, 4)$; b) $f(x) = x^3$, $(x_0, y_0) = (1, 1)$.
c) $f(x) = x + \sin x$, $(x_0, y_0) = (0, 0)$; d) $f(x) = x \cos x$, $(x_0, y_0) = (\pi/2, 0)$.

4. Use the binomial theorem to expand the following:

a)
$$(1+x)^5$$
; b) $(2+x)^5$; c) $(1-x)^5$.