MATH191: Practice Sheet 4

1. For each of the following functions $f(x)$, evaluate

$$
\lim _{x \rightarrow+\infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x),
$$

whenever it is possible to evaluate them. Answers of $+\infty$ and $-\infty$ are allowed in this question.
a) $f(x)=x^{2}+2 x-1$;
b) $f(x)=\frac{x^{3}+3 x}{x^{2}+1}$;
c) $f(x)=\frac{2 x^{2}+3 x+1}{x^{2}-3}$;
d) $f(x)=\frac{2 x^{2}+3 x+1}{x^{3}-4 x^{2}+1}$;
e) $f(x)=\sin x$;
f) $f(x)=\frac{\sin 2 x}{x}$.
2. Differentiate the following functions:
a) $2 x^{3}-3 x^{2}+2$;
b) $x^{2} \cos x$;
c) $\frac{3}{\sqrt{x}} ; \quad$ d) $\sqrt{1+x} ;$
e) $\frac{2 x^{2}+1}{\cos x}$;
f) $\sin \left(3 x^{2}-2\right)$;
g) $\frac{1}{(2 x-1)^{3}}$.

Hints: Don't guess. Use the rules of differentiation carefully as I did in the lectures. In parts c) and d), remember that $\frac{1}{\sqrt{x}}=x^{-1 / 2}$, and $\sqrt{1+x}=(1+x)^{1 / 2}$.
3. Find the equation of the tangent to the graph $y=f(x)$ at the point $\left(x_{0}, y_{0}\right)$ in each of the following cases:
a) $f(x)=x^{2}, \quad\left(x_{0}, y_{0}\right)=(-2,4)$;
b) $f(x)=x^{3}, \quad\left(x_{0}, y_{0}\right)=(1,1)$.
c) $f(x)=x+\sin x, \quad\left(x_{0}, y_{0}\right)=(0,0)$;
d) $f(x)=x \cos x, \quad\left(x_{0}, y_{0}\right)=(\pi / 2,0)$.
4. Use the binomial theorem to expand the following:
a) $(1+x)^{5}$;
b) $(2+x)^{5}$;
c) $(1-x)^{5}$.

