MATH191: Practice Sheet 3

1. Find the general solution of the equation

$$
3 \cos \theta+2 \sin \theta=1
$$

correct to 3 d.p..
2. In a) and b), convert from polar to Cartesian coordinates. In c) and d), convert from Cartesian to polar coordinates. Give the answers exactly in terms of π and square roots of intergers, where possible. Where this is not possible, give answers correct to 4 d.p.
a) $(r, \theta)=(1, \pi / 3)$;
b) $(r, \theta)=(2,-\pi / 4)$;
c) $(x, y)=(\sqrt{2}, 1)$;
d) $(x, y)=(-3,4)$.
3. Let

$$
f(x)=\frac{\sin (x)-x}{x^{3}}
$$

Calculate $f(x)$ for each of the values $x=0.1,-0.1,0.01$ and -0.01 . What does this suggest the value of $\lim _{x \rightarrow 0} f(x)$ to be? (If you don't recognize the number you're getting, try hitting the $1 / \mathrm{x}$ (or x^{-1}) button on your calculator.)
4. For each of the following functions $f(x)$, evaluate the limit

$$
\lim _{x \rightarrow a} f(x)
$$

for the given value of a, or explain why the limit doesn't exist.
a) $f(x)=x^{3}+3, a=1$;
b) $f(x)=\frac{x^{2}-4}{x-2}, a=2$;
c) $f(x)=\frac{x^{2}-5}{x-2}, a=2$;
d) $\lim _{x \rightarrow \pm \infty} f(x)=\frac{x^{2}-5}{(x-2)^{2}}$;
e) $f(x)=\frac{\sin 3 x}{x}, a=0$;
f) $f(x)=\frac{x}{|x|}, \quad a=0$
(In part e), you may use the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.)

