MATH191: Practice Sheet 2

1. Determine the inverse function $f^{-1}(x)$ of the rational function

$$
f(x)=\frac{3 x}{x-2}
$$

2. State whether each of the following functions is increasing, decreasing, or neither (on their maximal domains):
a) $f(x)=x^{3}+1$;
b) $f(x)=x^{2}+1$;
c) $f(x)=1-x$.
3. Determine whether each of the following functions is even, odd, or neither:
a) $\cos \left(x^{3}\right)$;
b) $\frac{\sin \left(x^{3}\right)}{1+x^{2}}$.
4. Evaluate the following. You should give exact answers in terms of $\pi, \sqrt{2}$, etc.: do not evaluate to any number of decimal places.
a) $\sin \left(-\frac{\pi}{4}\right)$;
b) $\cos ^{-1}(1)$;
c) $\tan ^{-1}(1)$.
5. Find the general solutions of the following equations:
a) $\tan \theta=\frac{1}{\sqrt{3}}$;
b) $\sin \theta=\frac{3}{5}$;
c) $\cos \theta=-1$.

In part b), you should give your answer to four decimal places. In parts a) and c), you should give exact answers.
6. Use the formulae for $\sin (2 \theta)$ and $\cos (2 \theta)$ to show that

$$
\sin (4 \theta)=4 \sin \theta \cos \theta-8 \sin ^{3} \theta \cos \theta
$$

Check the result for $\theta=\pi / 2$ and $\theta=\pi / 6$.

