Draft version

October 29, 2008

MATH191(R)

EXAMINER: Prof. S.M. Rees, EXTENSION 44063.

TIME ALLOWED: Three hours

Answer all of Section A and THREE questions from Section B. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55% of the available marks.

SECTION A

1. Find the inverse function of

$$f(x) = \frac{x+2}{2x-1}$$

[3 marks]

2.

- a) Convert $(x, y) = (\sqrt{3}, -1)$ from Cartesian to polar coordinates.
- b) Convert $(r, \theta) = (2, \frac{5\pi}{3})$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of π , $\sqrt{3}$ etc..

[5 marks]

3. State the value of $\sin^{-1}(-1/\sqrt{2})$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$\sin\theta = \frac{-1}{\sqrt{2}}$$

[4 marks]

4. Compute the following. (It may be that the answer is $+\infty$ or $-\infty$.)

a)
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{x^2 + 2x - 1}$$
, b) $\lim_{x \to (1/2)+} \frac{x + 2}{2x - 1}$.

[4 marks]

5. Differentiate the following functions with respect to x:

a)
$$\frac{x^2 + x - 1}{2x - 1}$$
; b) $e^{x^2 + x}$; c) $\ln(\cos x)$.

[6 marks]

Paper Code MATH191(R) Page 2 of 5 CONTINUED

Draft version

6. Evaluate the definite integral

$$\int_0^{\pi/2} (\sin(3x) + \sin^2 x) \mathrm{d}x,$$

giving your answer exactly in terms of π .

[5 marks]

7. Consider the curve defined by

$$2xy^2 - x^2y + x - 2y = 0.$$

Find an expression for dy/dx in terms of x and y, and hence give the equation of the tangent to the curve at the point (x, y) = (1, 1).

[8 marks]

8. State the maximal domain of the function

 $f(x) = x + 1 - 2\ln x.$

Show that f has one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection. State the range of f.

[8 marks]

9. Let z_1 and z_2 be the complex numbers given by $z_1 = 3 - j$ and $z_2 = -1 + 2j$. Calculate $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, and z_1/z_2 .

[6 marks]

10. Let $\mathbf{a} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. Find $\mathbf{a} + \mathbf{b}$, $\mathbf{a} - \mathbf{b}$, $|\mathbf{a}|$, $|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

[6 marks]

Paper Code MATH191(R) Page 3 of 5 CONTINUED

SECTION B

11. Write down the Maclaurin series expansions of the following functions, including the general term (you are not required to show any working if you remember the expansions):

a)
$$(1+x)^{-1}$$
; b) $\ln(1+x)$.

[4 marks]

Hence, or otherwise, determine the Maclaurin series expansions of the following functions:

c)
$$(1-x)^{-1}$$
; d) $(1+x^2)^{-1}$; e) $\ln(1+x^2)$.

[6 marks]

Verify that differentiating the Maclaurin series of $\ln(1+x^2)$ term by term gives the Maclaurin series of $(1 + x^2)^{-1}$ multiplied by 2x, and state why you expect this to be true.

[5 marks]

12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x = \pm R$.

a)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n} x^n$$
; b) $\sum_{n=1}^{\infty} \frac{3^n}{n} x^n$.

[15 marks]

Draft version

13. Use calculus to sketch the graph of the function $f(x) = x^3 - 4x + 2$, and show that f has exactly three zeros, one in (-3, -2), one in (0, 1) and one in (1, 2)

[6 marks]

Use the Newton-Raphson formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

with an initial guess $x_0 = 0$ to obtain successive approximations x_1 , x_2 , and x_3 to the solution of the equation f(x) = 0 in (0, 1). Give x_1 , x_2 and x_3 to 8 decimal places, and $f(x_3)$ to 1 significant figure.

[9 marks]

14. Let f(x) be defined by

$$f(x) = \begin{cases} 2x + 1 + (x - 1)^{-1} & \text{if } x \in (-\infty, 0], \\ 1 + (x - 1)^{-1} & \text{if } x \in (0, 1) \cup (1, \infty). \end{cases}$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate f'(x) where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.

[15 marks]

15.

a) Compute $(1+j)^{33}$.

b) Find all z in the form a + bj, for real a and b, with $z^3 = -27j$.

Hint: You might find de Moivre's Theorem useful in both parts.

[15 marks]

END