MATH191(R)

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Three hours

Answer all of Section A and THREE questions from Section B. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55% of the available marks.

SECTION A

1. Find the inverse function of

$$
f(x)=\frac{2 x+1}{x-3}
$$

Sketch the graph of $y=f(x)$, indicating the coordinates of any points where the graph crosses the axes.
2. By evaluating $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$, obtain the Maclaurin series expansion of the function

$$
f(x)=\ln (1-2 x)
$$

up to and including the term in x^{2}.
3.
a) Convert $(x, y)=(-1, \sqrt{3})$ from Cartesian to polar coordinates.
b) Convert $(r, \theta)=(3,5 \pi / 3)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{3}$ etc..
4. Evaluate the definite integral

$$
\int_{0}^{1}\left(\frac{1}{\sqrt{1+x}}+(1+x)^{-2}\right) \mathrm{d} x
$$

giving your answer exactly in terms of square roots.
5. Consider the curve defined by

$$
x^{3}+x y^{2}+y+1=0 .
$$

Find an expression for $d y / d x$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(-1,1)$.
[8 marks]
6. Differentiate the following functions with respect to x :
a) $\cos \left(x^{3}\right)$;
b) $\frac{\ln x}{x^{2}-2}$;
c) $\left(x^{2}+2 x+2\right)^{1 / 2}$.
[6 marks]
7. Show that the function

$$
f(x)=x e^{-x}
$$

has exactly one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection.
8. Let z_{1} and z_{2} be the complex numbers given by $z_{1}=3+j$ and $z_{2}=1-4 j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
9. State the value of $\cos ^{-1}(-\sqrt{3} / 2)$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$
\cos \theta=\frac{-\sqrt{3}}{2} .
$$

10. Let $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

SECTION B

11. Write down the Maclaurin series expansion of the function $f(x)=\sqrt{1+x}$, giving the expression for the general term. (You are not required to show any working if you remember this expansion.)
[2 marks]
Hence, or otherwise, determine the Maclaurin series expansions of the following functions:
a) $\sqrt{1-x}$
b) $\sqrt{4+x}$;
c) $\sqrt{1-x^{2}}$
[8 marks]
Hence, or otherwise, determine the n 'th derivative at $0, g^{(n)}(0)$, where $g(x)=$ $\sqrt{1-x^{2}}$.
[5 marks]
12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x= \pm R$.
a) $\sum_{n=0}^{\infty} \frac{2^{n}}{(n+1)^{2}} x^{n}$;
b) $\sum_{n=0}^{\infty} \frac{1}{2^{n} \sqrt{n+1}} x^{n}$.
[15 marks]
13. Use calculus to show that the function $f(x)=x^{3}+x^{2}+2 x-3$ has exactly one zero, in $(0,1)$.
[6 marks]
Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=1$ to obtain successive approximations x_{1}, x_{2}, and x_{3} to the solution of the equation $f(x)=0$ in $(0,1)$. Give x_{2}, x_{3} to 8 decimal places, and $f\left(x_{3}\right)$ to 1 significant figure.
14. Let $f(x)$ be defined by

$$
f(x)= \begin{cases}x+(1-x)^{-1} & \text { if } x \in(-\infty, 0] \\ 1-x & \text { if } x \in(0,1], \\ (1-x)^{-1} & \text { if } x \in(1, \infty)\end{cases}
$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate $f^{\prime}(x)$ where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.
[15 marks]
15.
a) Compute $(1-j)^{15}$.
b) Find all z in the form $a+b j$, for real a and b, with $z^{3}=-27$.

Hint: You might find de Moivre's Theorem useful in both parts.

