THE UNIVERSITY of LIVERPOOL

SECTION A

1. State the maximal domain and range of the function

$$
f(x)=\ln (x-2)
$$

Sketch the graph of $y=f(x)$, indicating the coordinates of any points where the graph crosses the axes.
2. By evaluating $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$, obtain the Maclaurin series expansion of the function

$$
f(x)=\frac{1}{\sqrt{x+4}}
$$

up to and including the term in x^{2}.
3.
a) Convert $(x, y)=(-1,1)$ from Cartesian to polar coordinates.
b) Convert $(r, \theta)=(2, \pi)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{2}$ etc..
4. Evaluate the definite integral

$$
\int_{1}^{2}\left(e^{2 x}+\frac{1}{\sqrt{x}}\right) \mathrm{d} x
$$

giving your answer exactly in terms of e and $\sqrt{2}$.

THE UNIVERSITY of LIVERPOOL

5. Consider the curve defined by

$$
x^{3}+x^{2} y+x y^{2}=1
$$

Find an expression for $d y / d x$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(1,-1)$.
[8 marks]
6. Differentiate the following functions with respect to x :
a) $x^{2} \cos 2 x$;
b) $\left(x^{2}+x+1\right)^{9}$;
c) $\frac{e^{x}}{x^{2}-1}$.
7. Show that the function

$$
f(x)=e^{-x}+x
$$

has exactly one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection.
[5 marks]
8. Let z_{1} and z_{2} be the complex numbers given by $z_{1}=2+j$ and $z_{2}=3-j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
9. State the value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$
\sin \theta=-\frac{1}{2}
$$

10. Let $\mathbf{a}=3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

THE UNIVERSITY of LIVERPOOL

SECTION B

11. Give the Maclaurin series expansion of the function $f(x)=e^{x}$ up to and including the term in x^{4}. (You are not required to show any working if you remember this expansion.)
[2 marks]
Hence, or otherwise, determine the Maclaurin series expansions of the following functions, up to and including the terms in x^{4} :
a) $e^{2 x}$;
b) e^{-x};
c) $e^{x}+e^{-x}$;
d) $e^{x}-e^{-x}$.
[10 marks]
Use some of these Maclaurin series expansions up to the term in x^{4} to obtain an approximation to $f(0.1)$, where

$$
f(x)=\frac{e^{2 x}+1-2 e^{x}}{x^{2}}
$$

You should give your approximation to 3 decimal places.
12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x= \pm R$ in a), and at $x=R$ in b).
a) $\sum_{n=1}^{\infty} \frac{1}{2^{n} n^{2}} x^{n}$;
b) $\sum_{n=1}^{\infty} \frac{1}{2^{n} \sqrt{n}} x^{n}$.
[15 marks]

THE UNIVERSITY of LIVERPOOL

13. Use calculus to show that the function $f(x)=x^{3}+3 x^{2}-1$ has exactly three zeros, one in $(-3,-2)$, one in $(-1,-1 / 2)$ and one in $(0,1)$.
[6 marks]
Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=\frac{1}{2}$ to obtain successive approximations x_{1} and x_{2} to the positive solution of the equation $f(x)=0$. Give x_{1} and x_{2} as fractions, and also to 6 decimal places. Also, give $f\left(x_{2}\right)$ to 6 decimal places.
[9 marks]
14. Let $f(x)$ be defined by

$$
f(x)= \begin{cases}1 /(1+x) & \text { if } x \in(-\infty,-1) \\ 1+(x / 2) & \text { if } x \in[-1,1] \\ \left(4-x^{2}\right) /(1+x) & \text { if } x \in(1, \infty)\end{cases}
$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate $f^{\prime}(x)$ where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.
[15 marks]
15. Find all z in the form $a+b j$, for real a and b, such that
a) $z^{2}=-4 j ;$
b) $z^{3}=j$.

Hint: You might find de Moivre's Theorem useful.

