

SECTION A

1. State the maximal domain and range of the function

$$f(x) = \ln(x - 2)$$

Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

[4 marks]

2. By evaluating f(0), f'(0), and f''(0), obtain the Maclaurin series expansion of the function

$$f(x) = \frac{1}{\sqrt{x+4}}$$

up to and including the term in x^2 .

[5 marks]

3.

- a) Convert (x, y) = (-1, 1) from Cartesian to polar coordinates.
- b) Convert $(r, \theta) = (2, \pi)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of π , $\sqrt{2}$ etc..

[5 marks]

4. Evaluate the definite integral

$$\int_{1}^{2} \left(e^{2x} + \frac{1}{\sqrt{x}} \right) \, \mathrm{d}x,$$

giving your answer exactly in terms of e and $\sqrt{2}$.

[5 marks]

CONTINUED

5. Consider the curve defined by

$$x^3 + x^2y + xy^2 = 1$$

Find an expression for dy/dx in terms of x and y, and hence give the equation of the tangent to the curve at the point (x, y) = (1, -1).

[8 marks]

6. Differentiate the following functions with respect to *x*:

a)
$$x^2 \cos 2x$$
; b) $(x^2 + x + 1)^9$; c) $\frac{e^x}{x^2 - 1}$.

[7 marks]

7. Show that the function

$$f(x) = e^{-x} + x$$

has exactly one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection.

[5 marks]

8. Let z_1 and z_2 be the complex numbers given by $z_1 = 2 + j$ and $z_2 = 3 - j$. Calculate $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, and z_1/z_2 .

[6 marks]

9. State the value of $\sin^{-1}(-\frac{1}{2})$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$\sin\theta = -\frac{1}{2}.$$

[4 marks]

10. Let $\mathbf{a} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Find $\mathbf{a} + \mathbf{b}$, $\mathbf{a} - \mathbf{b}$, $|\mathbf{a}|$, $|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

[6 marks]

Paper Code MATH 191(R) Page 3 of 5

CONTINUED

SECTION B

11. Give the Maclaurin series expansion of the function $f(x) = e^x$ up to and including the term in x^4 . (You are not required to show any working if you remember this expansion.)

[2 marks]

Hence, or otherwise, determine the Maclaurin series expansions of the following functions, up to and including the terms in x^4 :

a)
$$e^{2x}$$
; b) e^{-x} ; c) $e^x + e^{-x}$; d) $e^x - e^{-x}$.

[10 marks]

Use some of these Maclaurin series expansions up to the term in x^4 to obtain an approximation to f(0.1), where

$$f(x) = \frac{e^{2x} + 1 - 2e^x}{x^2}.$$

You should give your approximation to 3 decimal places.

[3 marks]

12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x = \pm R$ in a), and at x = R in b).

a)
$$\sum_{n=1}^{\infty} \frac{1}{2^n n^2} x^n;$$
 b) $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{n}} x^n.$

[15 marks]

13. Use calculus to show that the function $f(x) = x^3 + 3x^2 - 1$ has exactly three zeros, one in (-3, -2), one in (-1, -1/2) and one in (0, 1).

[6 marks]

Use the Newton-Raphson formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

with an initial guess $x_0 = \frac{1}{2}$ to obtain successive approximations x_1 and x_2 to the positive solution of the equation f(x) = 0. Give x_1 and x_2 as fractions, and also to 6 decimal places. Also, give $f(x_2)$ to 6 decimal places.

[9 marks]

14. Let f(x) be defined by

$$f(x) = \begin{cases} 1/(1+x) & \text{if } x \in (-\infty, -1) \\ 1+(x/2) & \text{if } x \in [-1, 1] \\ (4-x^2)/(1+x) & \text{if } x \in (1, \infty) \end{cases}$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate f'(x) where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.

[15 marks]

15. Find all z in the form a + bj, for real a and b, such that

a)
$$z^2 = -4j;$$
 b) $z^3 = j.$

Hint: You might find de Moivre's Theorem useful.

[15 marks]