MATH191

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Three hours

Full marks are obtained by complete answers to all of Section A and THREE questions from Section B. The best three answers to Section B will be taken into account, but all answers will be marked. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55\% of the available marks and each question in Section B is worth 15% of the available marks.

SECTION A

1. Find the inverse function of

$$
f(x)=\frac{1+2 x}{1-x} .
$$

Determine the domain and range of f. Sketch the graph of f, marking clearly any vertical or horizontal asymptotes.
2.
a) Convert $(r, \theta)=(3,-3 \pi / 4)$ from polar to Cartesian coordinates.
b) Convert $(x, y)=(-2,2)$ from Cartesian to polar coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{2}$ etc..
3. Compute the following. (It may be that the answer is $+\infty$ or $-\infty$ in some cases.)
a) $\lim _{x \rightarrow(-1)-} \frac{x^{2}+2}{x+1}$,
b) $\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}-x-1}{x^{2}-2 x+2}$
c) $\lim _{x \rightarrow-1} \frac{3 x^{2}+x-2}{4 x^{2}+5 x+1}$,
d) $\lim _{x \rightarrow 0} \frac{\tan x}{x^{2}+x}$

Hint: It may be that the answer is $+\infty$ or $-\infty$ in some cases. You may use l'Hôpital's Rule where it is appropriate to do so.
4. Differentiate the following functions with respect to x :
a) $3 x \sin x$;
b) $\frac{x+1}{x^{2}+3}$;
c) $\sin (1 / x)$
d) $\cos (\sin x)$.
5. Evaluate the definite integral

$$
\int_{0}^{\pi / 6}\left(\cos (3 x)-\sin ^{2}(2 x)\right) \mathrm{d} x
$$

giving your answer exactly.
6. Consider the curve defined by

$$
4 x y-y^{3}=0 .
$$

Find an expression for $d y / d x$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(1,2)$.
7. Let z_{1} and z_{2} be the complex numbers given by $z_{1}=-2+3 j$ and $z_{2}=1-4 j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
8. Let $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ and $\mathbf{b}=4 \mathbf{i}-\mathbf{j}-\mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

SECTION B

9. a) Write down the Maclaurin series expansion of $\frac{1}{1-x}$, including the general term (you are not required to show any working if you remember the expansion).
[3 marks]
b) Hence, or otherwise, determine the Maclaurin series of the following, including the general term.

$$
\begin{array}{ll}
\text { (i) } \frac{1}{1+3 x} & \text { (ii) } \frac{1}{1-x^{3}}
\end{array}
$$

c) Find the Maclaurin series of $\frac{1}{(1-x)^{2}}$, including the general term. Once again, you are not required to show any working if you remember the expansion
[5 marks]
d) Find the radius of convergence of the Maclaurin series of $\frac{1}{(1-x)^{2}}$.
10. a) Show that the stationary points of

$$
f(x)=x+\sin x
$$

are all points of the form $(2 n+1) \pi, n \in \mathbb{Z}$. Determine which (if any) of these stationary points are maxima and which are minima, and which are points of inflection. Determine whether the function f is increasing or decreasing or neither.
b) Now find all the stationary points of

$$
g(x)=x+2 \sin x .
$$

Determine which of the stationary points are maxima and which are minima. Sketch the graph of g.
11. a) Use calculus to find the intervals on which the function $f(x)=x^{3}-7 x+3$ is strictly increasing and strictly decreasing. Show also that the function has three zeros, one in $(-3,-2)$, one in $(0,1)$ and one in $(2,3)$.
b) Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=0$ to obtain successive approximations x_{1}, x_{2}, and x_{3} to the solution of the equation $f(x)=0$ in $(0,1)$. Give x_{1}, x_{2} and x_{3} to 8 decimal places, and $f\left(x_{3}\right)$ to 1 significant figure.
12. Let $f(x)$ be defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{4}{x^{2}+1} \text { if } x \in(-\infty, 1) \\
x^{2}+1 \text { if } x \in[1, \infty)
\end{array}\right.
$$

Find any horizontal and vertical asymptotes of f. Calculate $f^{\prime}(x)$ where it exists. Determine whether f is continuous or not, and whether it is differentiable or not, at $x=1$, and give the left and right derivatives at this point, if they exist. Determine any stationary points of f and their types. Sketch the graph of f.
[15 marks]
13. Find all solutions z of each of the following equations, in the form $z=a+b j$ for real a and b. In each case, indicate where the solutions are in the plane.
a) $j z^{2}+3 z+4 j=0$
b) $z^{4}=-1+\sqrt{3} j$

Hint: You might find de Moivre's Theorem useful in the second part.

