## MATH191

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Three hours

Full marks are obtained by complete answers to all of Section $A$ and THREE questions from Section B. The best three answers to Section B will be taken into account, but all answers will be marked. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55\% of the available marks and each question in Section B is worth $15 \%$ of the available marks.

## SECTION A

1. Find the inverse function of

$$
f(x)=\frac{3 x+5}{x-1}
$$

Determine the domain and range of $f$.
2.
a) Convert $(r, \theta)=(2,-\pi / 6)$ from polar to Cartesian coordinates.
b) Convert $(x, y)=(-\sqrt{3},-1)$ from Cartesian to polar coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{3}$ etc..
[5 marks]
3. Let $f(x)$ be as in question 1. Compute the following. (It may be that the answer is $+\infty$ or $-\infty$.)
a) $\lim _{x \rightarrow 1-} f(x)$,
b) $\lim _{x \rightarrow \infty} f(x)$.

Sketch the graph of $f$
4. Using l'Hopital's rule or otherwise, compute
a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}$,
b) $\lim _{x \rightarrow \pi / 2} \frac{\cos x}{2 x-\pi}$.
5. Differentiate the following functions with respect to $x$ :
a) $x^{2} e^{x}$;
b) $\frac{2 x-1}{x^{2}+4}$;
c) $(1+\sin x)^{10}$.
6. For $f$ as in 5a), that is, $f(x)=x^{2} e^{x}$, show that $f$ has exactly two stationary points, and determine the type of each one: that is, local minimum, local maximum or point of inflexion.
7. Evaluate the definite integral

$$
\int_{0}^{\pi / 8}(\sqrt{1+2 x}-\sin 2 x \cos 2 x) \mathrm{d} x
$$

giving your answer exactly.
8. Consider the curve defined by

$$
2 x^{2} y^{2}-3 x y=2
$$

Find an expression for $d y / d x$ in terms of $x$ and $y$, and hence give the equation of the tangent to the curve at the point $(x, y)=(2,1)$.
9. Let $z_{1}$ and $z_{2}$ be the complex numbers given by $z_{1}=3-j$ and $z_{2}=2+5 j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and $z_{1} / z_{2}$.
10. Let $\mathbf{a}=\mathbf{i}+\mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between $\mathbf{a}$ and $\mathbf{b}$ ?

## SECTION B

11. a) Write down the Maclaurin series expansion of $\cos x$, including the general term (you are not required to show any working if you remember the expansion).
b) Hence, or otherwise, determine the Maclaurin series of
(i) $\cos (2 x)$
(ii) $\cos \left(2 x^{2}\right)$
(iii) $\cos \sqrt{x}$.
c) Hence or otherwise, determine

$$
\lim _{x \rightarrow 0} \frac{4 \cos x-\cos 2 x-3 \cos \left(2 x^{2}\right)}{x^{4}}
$$

d) Find the radius of convergence of the Maclaurin series of $\cos \sqrt{x}$.
12.
a) Find all solutions of the equation

$$
\cos \theta=\frac{1}{2} .
$$

b) Using the trigonometric formula

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

find a relationship between $\cos (\theta+\pi / 2)$ and $\sin \theta$.
c) Find all solutions of

$$
2 \cos \theta+4 \sin \theta=3
$$

d) Explain why the equation

$$
2 \cos \theta+4 \sin \theta=5
$$

has no solutions.
13.
a) Use calculus to show that the function $f(x)=x^{3}+3 x-6$, has exactly one zero and that this zero is in $(1,2)$. Sketch the graph. Determine whether $f$ is
(i) even or odd or neither;
(ii) increasing or decreasing or neither.
b) Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=1$ to obtain successive approximations $x_{1}, x_{2}$, and $x_{3}$ to the solution of the equation $f(x)=0$ in $(0,1)$. Give $x_{1}, x_{2}$ and $x_{3}$ to 8 decimal places, and $f\left(x_{3}\right)$ to 1 significant figure.
14. Let $f(x)$ be defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x+1} \text { if } x \in(-\infty,-1), \\
|x| \text { if } x \in[-1,1] \\
\frac{x^{2}+1}{2} \text { if } x \in(1, \infty) .
\end{array}\right.
$$

Find any horizontal and vertical asymptotes of $f$. Calculate $f^{\prime}(x)$ where it exists. Determine whether $f$ is continuous or not, and whether it is differentiable or not, at each of the points $x=-1,0$ and 1 . Give the left and right derivatives at any of these three points where they exist. Show that $f$ has no stationary points but that it does have a local minimum. Sketch the graph of $f$.

## 15.

Find all solutions $z$ of each of the following equations, in the form $z=a+b j$ for real $a$ and $b$. In each case, indicate where the solutions are in the plane.
a) $z^{2}+3 j z+4=0$
b) $z^{3}=27 j$
[10 marks]
Hint: You might find de Moivre's Theorem useful in the second part.

