MATH191

Examiner: Prof. S.M. Rees, Extension 44063.

Time allowed: Three hours

Answer all of Section A and THREE questions from Section B. The marks shown against questions, or parts of questions, indicate their relative weight. Section A carries 55% of the available marks.

SECTION A

1. Find the inverse function of

$$
f(x)=\frac{2 x+1}{x+2} .
$$

2.

a) Convert $(x, y)=(-1, \sqrt{3})$ from Cartesian to polar coordinates.
b) Convert $(r, \theta)=\left(1, \frac{3 \pi}{4}\right)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{2}$ etc..
3. State the value of $\tan ^{-1}(-1 / \sqrt{3})$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$
\tan \theta=\frac{-1}{\sqrt{3}} .
$$

4. Compute the following. (It may be that the answer is $+\infty$ or $-\infty$.)
a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+1}{x^{2}+2}$,
b) $\lim _{x \rightarrow(-2)+} \frac{2 x+1}{x+2}$.
5. Differentiate the following functions with respect to x :
a) $\frac{x^{2}+1}{x-1}$;
b) $x e^{x^{2}}$;
c) $\ln \left(x^{2}+3 x+3\right)$.
6. Evaluate the definite integral

$$
\int_{0}^{\pi / 2}\left(\sin (2 x)+\cos ^{2} x\right) \mathrm{d} x,
$$

giving your answer exactly in terms of π.
7. Consider the curve defined by

$$
x y^{2}+x^{2} y+x+y=4
$$

Find an expression for $d y / d x$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(1,1)$.
8. State the maximal domain of the function

$$
f(x)=x-3 \ln x .
$$

Show that f has one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection. State the range of f.
[8 marks]
9. Let z_{1} and z_{2} be the complex numbers given by $z_{1}=2-4 j$ and $z_{2}=-1+3 j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
10. Let $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}+4 \mathbf{j}+\mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

SECTION B

11. Write down the Maclaurin series expansions of the following functions, including the general term (you are not required to show any working if you remember the expansions):
a) $(1+x)^{-1}$;
b) $\ln (1+x)$.
[4 marks]
Hence, or otherwise, determine the Maclaurin series expansions of the following functions:
c) $(1-x)^{-1}$;
d) $\ln (1-x)$;
e) $\ln \left(1-x^{2}\right)$.

Verify that differentiating the Maclaurin series of $\ln \left(1-x^{2}\right)$ term by term gives the Maclaurin series of $(1+x)^{-1}-(1-x)^{-1}$, and state why you expect this to be true.
[5 marks]
12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x= \pm R$.
a) $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2}} x^{n}$;
b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+1} x^{n}$.
[15 marks]
13. Use calculus to sketch the graph of the function $f(x)=x^{3}-3 x+1$, and show that f has three zeros, one in $(-2,-1)$, one in $(0,1)$ and one in $(1,2)$

Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=0$ to obtain successive approximations x_{1}, x_{2}, and x_{3} to the solution of the equation $f(x)=0$ in $(0,1)$. Give x_{1}, x_{2} and x_{3} to 8 decimal places, and $f\left(x_{3}\right)$ to 1 significant figure.
14. Let $f(x)$ be defined by

$$
f(x)= \begin{cases}x+1+2(x-1)^{-1} & \text { if } x \in(-\infty, 0] \\ 1+2(x-1)^{-1} & \text { if } x \in(0,1) \cup(1, \infty)\end{cases}
$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate $f^{\prime}(x)$ where it exists. Identify any points where f is not differentiable. Show that f has one stationary point, determine its type, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.
15.
a) Compute $(1-j)^{15}$.
b) Find all z in the form $a+b j$, for real a and b, with $z^{3}=3 \sqrt{3} j$.

Hint: You might find de Moivre's Theorem useful in both parts.

