

SECTION A

1. State the maximal domain and range of the function

$$f(x) = \ln(x+1).$$

Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

[4 marks]

2. By evaluating f(0), f'(0), and f''(0), obtain the Maclaurin series expansion of the function

$$f(x) = \sqrt{x+4}$$

up to and including the term in x^2 .

[5 marks]

3.

- a) Convert (x,y) = (-5,0) from Cartesian to polar coordinates.
- b) Convert $(r, \theta) = (2, 3\pi/4)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of π , $\sqrt{2}$ etc..

[5 marks]

4. Evaluate the definite integral

$$\int_{1}^{2} \left(e^{-x} + \sqrt{x} \right) \, \mathrm{d}x,$$

giving your answer exactly in terms of e and $\sqrt{2}$.

[5 marks]

Consider the curve defined by

$$x^2 + \cos y = 1.$$

Find an expression for dy/dx in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x,y) = (1/\sqrt{2}, \pi/3)$.

[8 marks]

Differentiate the following functions with respect to x:

a)
$$x^2 \sin 2x$$
;

a)
$$x^2 \sin 2x$$
; b) $(x^2 + x - 1)^{10}$; c) $\frac{e^x}{x^2 + 1}$.

c)
$$\frac{e^x}{x^2+1}.$$

[7 marks]

Show that the function

$$f(x) = e^x - x$$

has exactly one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection.

[5 marks]

8. Let z_1 and z_2 be the complex numbers given by $z_1 = 3 + j$ and $z_2 = 2 - j$. Calculate $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, and z_1/z_2 .

[6 marks]

9. State the value of $\sin^{-1}(-1\sqrt{2})$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$\sin\theta = \frac{-1}{\sqrt{2}}.$$

[4 marks]

10. Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 5\mathbf{j} + \mathbf{k}$. Find $\mathbf{a} + \mathbf{b}$, $\mathbf{a} - \mathbf{b}$, $|\mathbf{a}|$, $|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

[6 marks]

SECTION B

11. Give the Maclaurin series expansion of the function $f(x) = e^x$ up to and including the term in x^4 . (You are not required to show any working if you remember this expansion.)

[2 marks]

Hence, or otherwise, determine the Maclaurin series expansions of the following functions, up to and including the terms in x^4 :

a)
$$e^x - 1$$
; b) xe^x ; c) e^{-x} ; d) e^{x^2} .

b)
$$xe^x$$

c)
$$e^{-x}$$

d)
$$e^{x^2}$$

[10 marks]

Use the Maclaurin series expansion of e^x up to the term in x^4 to obtain an approximation to f(0.1), where

$$f(x) = \frac{e^x - 1}{x} - e^x.$$

You should give your approximation to 4 decimal places.

[3 marks]

12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at x = Rand at x = -R in a), and at x = R in b).

a)
$$\sum_{n=1}^{\infty} \frac{1}{2n^2} x^n$$
; b) $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}} x^n$.

b)
$$\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}} x^n$$

[15 marks]

THE UNIVERSITY of LIVERPOOL

13. Use calculus to show that the function $f(x) = x^3 - 3x + 1$ has exactly three zeros, one in (-2, -1), one in (0, 1/2) and one in (1, 2).

[9 marks]

Use the Newton-Raphson formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

with an initial guess $x_0 = \frac{1}{2}$ to obtain successive approximations x_1 , x_2 , and x_3 to the solution of the equation f(x) = 0 in $(0, \frac{1}{2})$. Give x_2 , x_3 to 8 decimal places, and $f(x_3)$ to 1 significant figure.

[6 marks]

14. Let f(x) be defined by

$$f(x) = \begin{cases} \frac{1}{1+x} & \text{if } x \in (-\infty, -1) \\ e^x & \text{if } x \in [-1, 0] \\ \frac{1-\frac{1}{4}x^2}{1+x} & \text{if } x \in (0, \infty) \end{cases}$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate f'(x) where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.

[15 marks]

15. Find all z in the form a + bj, for real a and b, such that

a)
$$z^2 = 4j$$
; b) $z^3 = -8j$.

Hint: You might find de Moivre's Theorem useful.

[15 marks]