THE UNIVERSITY
 of LIVERPOOL

SECTION A

1. State the maximal domain and range of the function

$$
f(x)=\ln (x+1)
$$

Sketch the graph of $y=f(x)$, indicating the coordinates of any points where the graph crosses the axes.
2. By evaluating $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$, obtain the Maclaurin series expansion of the function

$$
f(x)=\sqrt{x+4}
$$

up to and including the term in x^{2}.
3.
a) Convert $(x, y)=(-5,0)$ from Cartesian to polar coordinates.
b) Convert $(r, \theta)=(2,3 \pi / 4)$ from polar to Cartesian coordinates.

In both parts, full marks will only be obtained if exact answers are given in terms of $\pi, \sqrt{2}$ etc..
4. Evaluate the definite integral

$$
\int_{1}^{2}\left(e^{-x}+\sqrt{x}\right) \mathrm{d} x
$$

giving your answer exactly in terms of e and $\sqrt{2}$.

THE UNIVERSITY
 of LIVERPOOL

5. Consider the curve defined by

$$
x^{2}+\cos y=1 .
$$

Find an expression for $d y / d x$ in terms of x and y, and hence give the equation of the tangent to the curve at the point $(x, y)=(1 / \sqrt{2}, \pi / 3)$.
6. Differentiate the following functions with respect to x :
a) $x^{2} \sin 2 x$;
b) $\left(x^{2}+x-1\right)^{10}$;
c) $\frac{e^{x}}{x^{2}+1}$.
[7 marks]
7. Show that the function

$$
f(x)=e^{x}-x
$$

has exactly one stationary point. Determine whether the stationary point is a local maximum, a local minimum, or a point of inflection.
8. Let z_{1} and z_{2} be the complex numbers given by $z_{1}=3+j$ and $z_{2}=2-j$. Calculate $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
9. State the value of $\sin ^{-1}(-1 \sqrt{2})$ (you should give an exact answer in radians, in terms of π). Give the general solution of the equation

$$
\sin \theta=\frac{-1}{\sqrt{2}}
$$

10. Let $\mathbf{a}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-5 \mathbf{j}+\mathbf{k}$. Find $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b},|\mathbf{a}|,|\mathbf{b}|$, and $\mathbf{a} \cdot \mathbf{b}$. What is the angle between \mathbf{a} and \mathbf{b} ?

THE UNIVERSITY
 of LIVERPOOL

SECTION B

11. Give the Maclaurin series expansion of the function $f(x)=e^{x}$ up to and including the term in x^{4}. (You are not required to show any working if you remember this expansion.)
[2 marks]
Hence, or otherwise, determine the Maclaurin series expansions of the following functions, up to and including the terms in x^{4} :
a) $e^{x}-1$;
b) $x e^{x}$;
c) e^{-x};
d) $e^{x^{2}}$.
[10 marks]
Use the Maclaurin series expansion of e^{x} up to the term in x^{4} to obtain an approximation to $f(0.1)$, where

$$
f(x)=\frac{\epsilon^{x}-1}{x}-\epsilon^{x}
$$

You should give your approximation to 4 decimal places.
12. In each of the following cases, calculate the radius of convergence R of each of the power series, and determine whether the series converges at $x=R$ and at $x=-R$ in a), and at $x=R$ in b).

$$
\text { a) } \sum_{n=1}^{\infty} \frac{1}{2 n^{2}} x^{n} ; \quad \text { b) } \sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}} x^{n} .
$$

[15 marks]

THE UNIVERSITY of LIVERPOOL

13. Use calculus to show that the function $f(x)=x^{3}-3 x+1$ has exactly three zeros, one in $(-2,-1)$, one in $(0,1 / 2)$ and one in $(1,2)$.
[9 marks]
Use the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

with an initial guess $x_{0}=\frac{1}{2}$ to obtain successive approximations x_{1}, x_{2}, and x_{3} to the solution of the equation $f(x)=0$ in $\left(0, \frac{1}{2}\right)$. Give x_{2}, x_{3} to 8 decimal places, and $f\left(x_{3}\right)$ to 1 significant figure.
14. Let $f(x)$ be defined by

$$
f(x)= \begin{cases}\frac{1}{1+x} & \text { if } x \in(-\infty,-1) \\ e^{x} & \text { if } x \in[-1,0] \\ \frac{1-\frac{1}{4} x^{2}}{1+x} & \text { if } x \in(0, \infty)\end{cases}
$$

Find any horizontal and vertical asymptotes of f. Identify any points of discontinuity of f. Calculate $f^{\prime}(x)$ where it exists. Identify any points where f is not differentiable. Show that f has no stationary points, and determine maximal intervals on which f is decreasing and maximal intervals on which f is increasing. Find any zeros of f. Sketch the graph of f.
15. Find all z in the form $a+b j$, for real a and b, such that
a) $z^{2}=4 j$;
b) $z^{3}=-8 j$.

Hint: You might find de Moivre's Theorem useful.

