Math191 Class Test 2009- Solutions

1. State the domain and range of the following functions:
a) $f(x)=\cos (2 x)$;

Solution The domain is \mathbb{R} and the range is $[-1,1]$.
b) $g(x)=|x+2|$.

Solution The domain is \mathbb{R} and the range is $[0, \infty)$
2. Let

$$
f(x)=\frac{2 x+3}{x-1}
$$

Find the inverse function $f^{-1}(x)$.
Solution. Set $y=f(x)$ and solve for x in terms of y :

$$
y=\frac{2 x+3}{x-1} \Leftrightarrow(x-1) y=2 x+3 \Leftrightarrow x(y-2)=y+3 \quad \Leftrightarrow \quad x=\frac{y+3}{y-2}
$$

So

$$
f^{-1}(x)=\frac{x+3}{x-2}
$$

[3 marks]
The domain of f is $(-\infty, 1) \cup(1, \infty)$. The range of f is the domain of f^{-1}, that is, $(-\infty, 2) \cup(2, \infty)$.

[4 marks]
3.
a) Find the exact value of $\cos ^{-1}(-1 / 2)$.

Solution. $\cos ^{-1}(-1 / 2)=2 \pi / 3$. [2 marks] Give the general solution of the equation

$$
\cos x=-\frac{1}{2} .
$$

Solution.

b) The general solution to $\cos x=-1 / 2$ is

$$
x= \pm \cos ^{-1}(-1 / 2)+2 n \pi= \pm \frac{2 \pi}{3}+2 n \pi
$$

for $n \in \mathbb{Z}$.
4. In this question, give exact answers (in terms of $\pi, \sqrt{3}$ etc.) and not for approximations to any number of decimal places.
a) Convert $(2,-2 \sqrt{3})$ from Cartesian to polar coordinates.

Solution. $r=\sqrt{x^{2}+y^{2}}=\sqrt{4+12}=4$ and $\tan \theta=y / x=-2 \sqrt{3} / 2=$ $-\sqrt{3}$. Hence

$$
\theta=\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}+n \pi
$$

for some $n \in \mathbf{Z}$. Since $(2,-2 \sqrt{3})$ is in the right half-plane, we may take $n=0$ and $\theta=-\pi / 3$.
[4 marks]
b) Convert ($1,7 \pi / 6$) from polar to Cartesian coordinates.

Solution.

$$
\begin{aligned}
& x=r \cos \theta=\cos (7 \pi / 6)=-\frac{\sqrt{3}}{2} \\
& y=r \sin \theta=\sin (7 \pi / 6)=-\frac{1}{2}
\end{aligned}
$$

[2 marks]
5. Determine whether the following limits exist. Where they exist, evaluate them.
a) $\lim _{x \rightarrow \infty} \frac{x+1}{x-1}$

Solution.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x+1}{x-1}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{1-\frac{1}{x}}=1 \tag{3marks}
\end{equation*}
$$

b) $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{3}+1}$

Solution.

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{3}+1}=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{(x+1)\left(x^{2}-x+1\right)}=\lim _{x \rightarrow-1} \frac{x-1}{x^{2}-x+1}=-\frac{2}{3}
$$

Alternatively since $x^{2}-1=0=x^{3}+1$ at $x=-1$ we can apply l'Hopital's Rule, and we obtain

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{3}+1}=\lim _{x \rightarrow-1} \frac{2 x}{3 x^{2}}=-\frac{2}{3}
$$

6
Differentiate the following functions. In part a), also find the tangent line through the point $(1,0)$.
a) $f(x)=x^{3}-1$

Solution. $f^{\prime}(x)=3 x^{2}$. The tangent line is $y=f^{\prime}(1)(x-1)$, that is, $y=3(x-1)=3 x-3$.
[4 marks]
b) $f(x)=x^{2} \cos (2 x-1)$

Solution. Using the Product Rule and the Chain Rule, $f^{\prime}(x)=2 x \cos (2 x-$ 1) $-2 x^{2} \sin (2 x-1)$.
c) $f(x)=\frac{2 x}{x^{2}+1}$

Solution. Using the Quotient Rule, $f^{\prime}(x)=\frac{2\left(x^{2}+1\right)-(2 x \times 2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}$.

7
a) Find the Maclaurin series of $f(x)=(1-x)^{-1}$

Solution

$$
f^{\prime}(x)=(1-x)^{-2}, \quad f^{\prime \prime}(x)=2!(1-x)^{-3}, \cdots f^{(n)}(x)=n!(1-x)-n-1
$$

So

$$
f(0)=1, \quad f^{\prime}(0)=1, \quad \frac{f^{\prime \prime}(0)}{2!}=1 \cdots \frac{f^{(n)}(0)}{n!}=1
$$

So the Maclaurin series of f is

$$
1+x+x^{2} \cdot+x^{n} \cdots=\sum_{n=0}^{\infty} x^{n}
$$

[4 marks]
b) Hence, or otherwise, find the Maclaurin series of $g(x)=\left(1-2 x^{2}\right)^{-1}$. Solution This is obtained by replacing x by $2 x^{2}$ in the Maclaurin series for f. So the Maclaurin series of g is

$$
1+2 x^{2}+4 x^{4}+\cdots+2^{n} x^{2 n} \cdots=\sum_{n=0}^{\infty} 2^{n} x^{2 n}
$$

