Math191 Practice Class Test 2009- Solutions

1. State the domain and range of the following functions:
a) $f(x)=1+\sin (2 x)$ Solution. The domain is \mathbb{R} and the range is [0, 2], because the range of $\sin (2 x)$ is $[-1,1]$.
b) $f(x)=|x|+2$ Solution. The domain is \mathbb{R} and the range is $[2, \infty)$ because the range of $|x|$ is $[0, \infty)$.
[3 marks]
2. Let

$$
f(x)=\frac{x-3}{x+1}
$$

Find the inverse function $f^{-1}(x)$. State the domain and range of f (NOT the inverse function) and sketch the graph, marking any horizontal or vertical asymptotes, and any zeros.
Solution. Set $y=f(x)$ and solve for x in terms of y :

$$
y=\frac{x-3}{x+1} \Leftrightarrow \quad(x+1) y=x-3 \quad \Leftrightarrow \quad y+3=x(1-y) \quad \Leftrightarrow \quad x=\frac{y+3}{1-y}
$$

[3 marks]
The domain of f is $(-\infty,-1) \cup(-1, \infty)$. The range of f is the domain of f^{-1}, that is, $(-\infty, 1) \cup(1, \infty)$.
[3 marks]

3.
a) Find the exact value of $\sin ^{-1}\left(-\frac{1}{2}\right)$. Solution. $\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6} \quad[2$ marks]
b) Give the general solution of the equation

$$
\sin x=-\frac{1}{2}
$$

Solution The general solution is

$$
(-1)^{n+1} \frac{\pi}{6}+n \pi
$$

[4 marks]
4. In this question, full marks will only be awarded for exact answers (in terms of $\pi, \sqrt{3}$ etc.) and not for approximations to any number of decimal places.
a) Convert $(2,5 \pi / 3)$ from polar to Cartesian coordinates.

Solution.

$$
\begin{aligned}
x=r \cos \theta & =2 \cos (5 \pi / 3)=1 \\
y=r \sin \theta & =2 \sin (5 \pi / 3)=-\sqrt{3} .
\end{aligned}
$$

b) Convert $(-2,2)$ from Cartesian to polar coordinates.

Solution.

$$
\begin{array}{r}
r=\sqrt{4+4}=2 \sqrt{2} \\
\theta=\tan ^{-1}(-1)+\pi=\frac{3 \pi}{4}
\end{array}
$$

5. Determine whether the following limits exist. Where they exist, evaluate them.
a) $\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+1}{x^{2}+x-2}$

Solution.

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+1}{x^{2}+x-2}=\lim _{x \rightarrow \pm \infty} \frac{2+\frac{1}{x^{2}}}{1+\frac{1}{x}-\frac{2}{x^{2}}}=2
$$

[3 marks]
b) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x+3}{x^{2}+2 x-3}$

Solution.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+2 x-3}=\lim _{x \rightarrow 1} \frac{(x-1)(x-2)}{(x+3)(x-1)}=\lim _{x \rightarrow 1} \frac{x-2}{x+3}=-\frac{1}{4}
$$

Alternatively, since $x^{2}-3 x+2=0=x^{2}+2 x-3$ and $x=1$ we can apply l'Hopital's rule and obtain $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+2 x-3}=\lim _{x \rightarrow 1} \frac{2 x-3}{2 x+2}=-\frac{1}{4}$
6. Differentiate the following functions. In part a), also find the tangent line through the point $(1,1)$.
a) $f(x)=2 x^{3}+3 x-4$

Solution. a) $f^{\prime}(x)=6 x^{2}+3$. The tangent line is $y-1=f^{\prime}(1)(x-1)$, that is, $y-1=9(x-1)$, or $y=9 x-8$.
b) $f(x)=\tan (2 x)$

Solution Using the Chain Rule with $u=2 x$ and $f(x)=\tan u$, we have $f^{\prime}(x)=2 \sec ^{2}(2 x)$.
c) $f(x)=\frac{\sin x}{x^{2}}$

Solution Using the Product Rule, since $f(x)=x^{-2} \sin x$,

$$
f^{\prime}(x)=-2 x^{-3} \sin x+x^{-2} \cos x=\frac{-2 \sin x+x \cos x}{x^{3}} .
$$

7.

a) Find the Maclaurin series of $f(x)=\ln (1-x)$

Solution

$$
f^{\prime}(x)=-(1-x)^{-1}, f^{\prime \prime}(x)=-(1-x)^{-2}, f^{(3)}(x)=-2(1-x)^{-3}, \cdots f^{(n)}(x)=-n!(1-x)^{-n-1}
$$

So

$$
f(0)=\ln 1=0, \quad f^{\prime}(0)=-1, \quad \frac{f^{\prime \prime}(0)}{2!}=-\frac{1}{2} \cdots \frac{f^{(n)}(0)}{n!}=-\frac{1}{n} .
$$

So the Maclaurin Series of f is

$$
-x-\frac{1}{2} x^{2} \cdots-\frac{1}{n} x^{n} \cdots=-\sum_{n=1}^{\infty} \frac{1}{n} x^{n}
$$

b) Hence, or otherwise, find the Maclaurin series of $g(x)=\ln \left(1-x^{2}\right)$

Solution We obtain the Maclaurin series for g simply by substituting x^{2} for x in the Maclaurin series for f. So the Maclaurin series for g is

$$
-x^{2}-\frac{1}{2} x^{4} \cdots-\frac{1}{n} x^{2 n} \cdots=-\sum_{n=1}^{\infty} \frac{1}{n} x^{2 n}
$$

