Math191 Class Test 13 November 2009

- The exam is $\mathbf{4 5}$ minutes long.
-
- No books or notes are allowed.
- Attempt as many questions as you can. FULL MARKS will be given for complete answers to ALL seven questions. The marks available for each question are indicated in square brackets in the right margin.
- Please turn your MOBILE PHONES OFF and DON'T TALK.

1. State the domain and range of the following functions:
a) $f(x)=\cos (2 x)$;
b) $g(x)=|x+2|$.
2. Let

$$
f(x)=\frac{2 x+3}{x-1}
$$

Find the inverse function $f^{-1}(x)$. State the domain and range of f (NOT the inverse function) and sketch its graph, marking any horizontal or vertical asymptotes, and any zeros.

3.

a) Find the exact value of $\cos ^{-1}(-1 / 2)$.
b) Give the general solution of the equation $\cos x=-\frac{1}{2}$.
4. In this question, give exact answers (in terms of $\pi, \sqrt{3}$ etc.) and not for approximations to any number of decimal places.
a) Convert $(2,-2 \sqrt{3})$ from Cartesian to polar coordinates.
b) Convert ($1,7 \pi / 6$) from polar to Cartesian coordinates.
5. Determine whether the following limits exist. Where they exist, evaluate them.
a) $\lim _{x \rightarrow \infty} \frac{x+1}{x-1}$
b) $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{3}+1}$
6.

Differentiate the following functions. In part a), also find the tangent line through the point $(1,0)$.
a) $f(x)=x^{3}-1$.
b) $f(x)=x^{2} \cos (2 x-1)$
c) $f(x)=\frac{2 x}{x^{2}+1}$
[10 marks]
7.
a) Find the Maclaurin series of $f(x)=(1-x)^{-1}$
b) Hence, or otherwise, find the Maclaurin series of $g(x)=\left(1-2 x^{2}\right)^{-1}$.

