Chapter 1

Functions and Graphs

1.1 Numbers (1.2.1, 1.2.4)

The most fundamental type of number are those we use to count with: $0,1,2, \ldots$. These are called the natural numbers: the set of all natural numbers is denoted \mathbb{N}.

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Next we encounter the whole numbers or integers: the set of all integers is denoted \mathbb{Z}.

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} .
$$

Clearly every natural number is an integer: that is $\mathbb{N} \subset \mathbb{Z}$.
Third, there are the fractions or rational numbers: the set of all rational numbers is denoted \mathbb{Q}. The rational numbers are those which can be written in the form p / q, where p and q are integers and $q \neq 0$. In set notation,

$$
\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}
$$

Since any integer n can be written as $n / 1$, every integer is a rational number: that is $\mathbb{Z} \subseteq \mathbb{Q}$.

Finally there are the real numbers: all numbers which can be written with a decimal expansion. The set of all real numbers is denoted \mathbb{R}. Not every real number is rational: for example $\sqrt{2}$ and π can't be written in the form p / q. Such real numbers are called irrational.

Thus we have

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

Later on we'll come across the Complex numbers \mathbb{C}.

Interval notation

Interval notation is a very convenient way of denoting sets of real numbers. If a and b are real numbers with $a \leq b$, we write $[a, b]$ for the set of all real numbers x with $a \leq x \leq b$. That is,

$$
[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\} .
$$

Notice that this is really a collection of real numbers: thus $[1,4]$ does not just contain the numbers $1,2,3,4$, but everything between 1 and 4 (for example, $\pi)$.

Similarly we use the notation (a, b) for the same set excluding the endpoints:

$$
(a, b)=\{x \in \mathbb{R}: a<x<b\} .
$$

We can mix square and round brackets:

$$
\begin{aligned}
{[a, b) } & =\{x \in \mathbb{R}: a \leq x<b\} \\
(a, b] & =\{x \in \mathbb{R}: a<x \leq b\}
\end{aligned}
$$

When we don't want an upper or lower limit, we can use the symbol ∞ :

$$
\begin{aligned}
{[a, \infty) } & =\{x \in \mathbb{R}: a \leq x\} \\
(-\infty, b) & =\{x \in \mathbb{R}: x<b\}
\end{aligned}
$$

You should never put a square bracket next to ∞ or $-\infty$: ∞ is a convenient symbol, but it is not a real number.

1.2 Functions, Domain and Range (2.1, 2.2)

We often write expressions like $y=f(x)$. Here f is a function: we regard f as a machine, which, when we feed it a real number x, either spits out another real number $f(x)$ or tells us it doesn't like x. For example, if $f(x)=1 / x$, then if we feed f any real number $x \neq 0$, spits out the real number $1 / x$: if we accidentally feed it $x=0$, it complains (remember ∞ is not a real number).

Since we don't want our machine to complain, we have to be careful only to feed it allowable numbers.

The Maximal Domain of f is the set of all inputs x which don't make the machine complain (so $f(x)$ is a real number). Thus the maximal domain of $f(x)=1 / x$ is $(-\infty, 0) \cup(0, \infty)$. Sometimes we want to restrict the choice of
inputs: a domain of f is any set of allowed inputs x : thus [2,5] is a domain of $f(x)=1 / x$, but $[-2,2]$ is not (it contains 0 , which is disallowed).

The Range of f is the set of possible output values y.
The zeros of f are all the possible input values x such that the output $f(x)=0$. Also called roots .

1.3 Polynomials (2.4)

Polynomials are a very simple type of function:

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n} .
$$

The degree of the polynomial is the largest power of x that appears.

1. Degree 0: constants $f(x)=c_{0}$.
2. Degree 1: linear functions $f(x)=c_{0}+c_{1} x$.
3. Degree 2: quadratics $f(x)=c_{0}+c_{1} x+c_{2} x^{2}$.
4. Degree 3: cubics $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$.

Examples $f(x)=x^{2}-4$. Draw graph. The maximal domain is \mathbb{R}. The range is $[-4, \infty)$. Two zeros, ± 2.
$f(x)=x^{3}-3 x$. Draw graph. The maximal domain is \mathbb{R}. The range is \mathbb{R}. Three zeros, 0 and $\pm \sqrt{3}$.

The maximal domain of a polynomial is always \mathbb{R}. Polynomials are also continuous (you can draw the graph without taking your pen off the paper) and smooth (there are no sharp corners in the graph).

1.4 Rational functions (2.5)

A rational function is one which can be written in the form

$$
f(x)=\frac{g(x)}{h(x)}
$$

where $g(x)$ and $h(x)$ are polynomials.

Example

$$
\frac{x^{3}-3 x^{2}+5}{2 x^{4}+x-3} .
$$

Unlike polynomials, the maximal domain of a rational function may not be \mathbb{R} : they explode whenever $h(x)=0$. The zeros of a rational function are exactly the points where $g(x)=0$.

Examples $f(x)=1 / x$. Draw graph. The maximal domain is $(-\infty, 0) \cup$ $(0, \infty)$. The range is $(-\infty, 0) \cup(0, \infty)$. The line $x=0$ is a vertical asymptote. f is not continuous: it jumps at $x=0 . f$ has no zeros.
$f(x)=(x+2) /(x-1)^{2}$. Don't try to draw graph. The maximal domain is $(-\infty, 1) \cup(1, \infty) . f$ has one zero, at $x=-2$.

1.5 Modulus (1.2.4)

The modulus $|x|$ of a real number x is just its size: thus $|x|=x$ if $x \geq 0$, and $|x|=-x$ if $x<0$.

Examples $\quad f(x)=|x|$. Draw graph. The maximal domain in \mathbb{R}. The range is $[0, \infty)$. There is one zero, at $x=0 . f$ is continuous, but not smooth (there is a sharp corner at $x=0$).
$f(x)=\left|x^{2}-4\right|$. Draw graph. The maximal domain is \mathbb{R}. The range is $[0, \infty)$. There are two zeros, at $x= \pm 2 . f$ is continuous, but not smooth.
$f(x)=\left|x^{2}+1\right|$ is just the same as $f(x)=x^{2}+1$.

1.6 Even and Odd Functions (2.2.4)

An even function $f(x)$ is one for which $f(-x)=f(x)$ for all values of x (in the maximal domain). Thus the graph to the left of the y-axis can be obtained from the graph to the right by reflecting in the y-axis.

Examples are $x^{2},|x|, x^{4}+2 x^{2}+3$, any polynomial with only even powers.
An odd function $f(x)$ is one for which $f(-x)=-f(x)$ for all values of x (in the maximal domain). Thus the graph to the left of the y-axis can be obtained from the graph to the right by rotating about the origin.

Examples are $x, 1 / x, x^{3}-3 x$, any polynomial with only odd powers.
Unlike numbers, most functions are neither even nor odd. Example $f(x)=$ $x-3$. Any polynomial with both even and odd powers is neither even nor odd.

To decide whether a function $f(x)$ is even, odd, or neither, work out $f(-x)$ and decide whether it is equal to $f(x)$, to $-f(x)$, or to neither of these.

Examples: $f(x)=\frac{x}{x+2}, f(x)=\sin \left(x^{3}\right), f(x)=\sin (|x|), f(x)=\frac{\sin (x)}{x}$. Note last is not defined at $x=0$.

1.7 Increasing and Decreasing functions (2.2.1)

$f(x)$ is increasing on an interval $[a, b]$ if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $a \leq x_{1}<x_{2} \leq$ b. Intuitively, the graph slopes upwards in $[a, b]$, but may have flat bits. It is strictly increasing if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$. (There are no flat bits).
$f(x)$ is decreasing on $[a, b]$ if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ whenever $a \leq x_{1}<x_{2} \leq b$, and strictly decreasing if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.

Example $f(x)=x^{2}-3$ is strictly increasing on $[0, \infty)$ (and indeed on $[3,7]$), and strictly decreasing on $(-\infty, 0]$ (and indeed on $[-\pi,-\sqrt{2}]$.) It is neither increasing nor decreasing on $[-1,1]$.

1.8 Inverse functions (2.2.2)

Suppose f is a function: that is, if we input a real number x, it outputs a real number y. The inverse function f^{-1} is the function which takes the output of f and tells us what the input was. Thus if $y=f(x)$ then $x=f^{-1}(y)$.

Example $\quad f(x)=x+3$. Then $f^{-1}(x)=x-3$. (If $y=x+3$, then $x=y-3$, so $f^{-1}(y)=y-3$. However a function doesn't care what letter I use to define it, so we can also write $f^{-1}(x)=x-3$.) Draw graphs.

Thus determining the inverse function boils down to solving the equation $y=f(x)$ for x in terms of y.

Example $\quad f(x)=x /(x-2)$. To find the inverse function, write $y=x /(x-2)$ and solve for $x . y(x-2)=x, y x-x=2 y, x(y-1)=2 y, x=2 y /(y-1)$. Thus $f^{-1}(y)=2 y /(y-1)$, or $f^{-1}(x)=2 x /(x-1)$. Show graphs.

Notice the reflection rule: since finding the inverse function is just interchanging the roles of x and y, the graph of $f^{-1}(x)$ is the graph of $f(x)$ reflected in the line $y=x$.

Problem: not every function has an inverse. Consider for example $f(x)=x^{2}$. Should we say that $f^{-1}(4)=2$, or -2 ? We can't decide. Can see this problem on the graphs: draw graph of x^{2} and reflection in $y=x$. The problem is that $f(x)=x^{2}$ is two to one: there are two values of x which give rise to each value $f(x)$.

We say that $f(x)$ is one to one (or $1-1$) if different values of x always give different values of $f(x)$: that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

One to one functions $f(x)$ always have inverses: the maximal domain of $f^{-1}(x)$ is the range of $f(x)$, so may not be the same as the maxiaml domain of $f(x)$.

Examples $\quad f(x)=x^{3}$ is $1-1$. The maximal domain and the range of $f(x)$ are \mathbb{R}, and the same is true of $f^{-1}(x)=\sqrt[3]{x}$.
$f(x)=e^{x}$ is $1-1 . f(x)$ has maximal domain \mathbb{R}, and range $(0, \infty)$. The inverse $f^{-1}(x)=\ln (x)$ has maximal domain $(0, \infty)$, and range \mathbb{R}. (Pretend we know about these functions for now.)

If $f(x)$ is not $1-1$, and we want to talk about its inverse, we have to restrict the domain of $f(x)$ to one where it is $1-1$.

Example $f(x)=x^{2}$ is not $1-1$ on its maximal domain, but it is $1-1$ on the domain $[0, \infty)$. If we restrict to this domain, then $f(x)$ has an inverse $f^{-1}(x)=+\sqrt{x}$. Draw graphs. (Could just as well have chosen other domain).

Note: if $f(x)$ is continuous, then it is $1-1$ on an interval precisely when it is either strictly increasing or strictly decreasing there. Pictures.

1.9 Trigonometric Functions (2.6)

Draw a circle of radius 1 , and pick a point $P=(x, y)$ on the circle, at angle θ to the horizontal.

Then $\sin \theta=y, \cos \theta=x$, and $\tan \theta=y / x(=\sin \theta / \cos \theta)$.
Notice that $-1 \leq \sin \theta, \cos \theta \leq 1$ for any value of θ : i.e. the range of \sin and \cos is $[-1,1]$. On the other hand, $\tan \theta$ can take any real value: the range of \tan is \mathbb{R}.

By pythagoras's theorem, $\sin ^{2} \theta+\cos ^{2} \theta=1$.
You should always express angles in radians rather than degrees: there are very good reasons for this, which will become clear during the course. Remember that a full revolution (360 degrees) is 2π radians, so (give values of 180, 90, 60, 30 degrees).

Special angles: (Use 30-60-90 and 45-45-90 rules)

	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin	0	$1 / 2$	$1 / \sqrt{2}$	$\sqrt{3} / 2$	1
\cos	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	$1 / 2$	0
\tan	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	

Graphs of the trigonometric functions

Draw graphs of $\sin \theta, \cos \theta$ and $\tan \theta$. Note that \cos is even and \sin and \tan are odd.

A function $f(x)$ is periodic with period T or T-periodic if $f(x+T)=f(x)$ for all x.

Thus \sin and \cos are 2π-periodic, \tan is π-periodic.
Also define $\cot \theta=1 / \tan \theta=\cos \theta / \sin \theta, \operatorname{cosec} \theta=1 / \sin \theta$ and $\sec \theta=$ $1 / \cos \theta$.

Draw graph of $\cot \theta$: odd and π-periodic.

Trigonometric identities

Hand out trigonometric identities and talk about them.
We can derive other identities from these.
Example To get an expression for $\cos (3 \theta)$ in terms of $\cos \theta$, write $\cos (3 \theta)=$ $\cos (2 \theta+\theta)$, and observe

$$
\begin{align*}
\cos (2 \theta+\theta) & =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \sin \theta \tag{10,11}\\
& =2 \cos ^{3} \theta-\cos \theta-2 \sin ^{2} \theta \cos \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \tag{1}\\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{align*}
$$

Check: Try $\theta=0$. Then $\cos 3 \theta=\cos 0=1$, and $\cos \theta=1$, so the right hand side is $4(1)^{3}-3=4-3=1$. So this checks. Try $\theta=\pi / 3$. Then $\cos 3 \theta=\cos \pi=-1$, while $\cos \theta=\cos \pi / 3=1 / 2$. Thus the right hand side is $4(1 / 2)^{3}-3 / 2=1 / 2-3 / 2=-1$. So this checks.

Inverse trigonometric functions

The trigonometric functions are periodic, and so are " ∞ to 1 ". In order to consider their inverse functions, we have to restrict their domain to a principal domain, just as we did for $f(x)=x^{2}$.

The principal domain of $y=\sin x$ (draw graph) is $[-\pi / 2, \pi / 2]$. Thus the principal value of $\sin ^{-1} x$ lies in $[-\pi / 2, \pi / 2]$. (There are infinitely many angles
whose sine is x : we pick the one which lies between $-\pi / 2$ and $\pi / 2$.) Draw graph. Maximal domain $[-1,1]$, range $[-\pi / 2, \pi / 2]$.

The principal domain of $y=\cos x$ (draw graph) is $[0, \pi]$. Thus the principal value of $\cos ^{-1} x$ lies in $[0, \pi]$. Draw graph. Maximal domain $[-1,1]$, range $[0, \pi]$.

The principal domain of $y=\tan x$ (draw graph) is $[-\pi / 2, \pi / 2]$. Thus the principal value of $\tan ^{-1} x$ lies in $[-\pi / 2, \pi / 2]$. Draw graph. Maximal domain \mathbb{R}, range $[-\pi / 2, \pi / 2]$.

NB On your calculator, $\sin ^{-1} x, \cos ^{-1} x$ and $\tan ^{-1} x$ may be called $\arcsin x$, $\arccos x$, and $\arctan x$. Your calculator should automatically give the principal values of these functions. Make sure it's set on radians.

Trigonometric Equations

Consider solving the equation $\sin \theta=1 / 2$ for θ. One solution is $\theta=\sin ^{-1}(1 / 2)=$ $\pi / 6$. However there are infinitely many other solutions (draw graph). These are $\pi / 6+2 n \pi$, where n is any integer, and $(\pi-\pi / 6)+2 n \pi$, where n is any integer. Thus the general solution of $\sin \theta=1 / 2$ is

$$
\theta=\left\{\begin{array}{cc}
\pi / 6+2 n \pi & n \in \mathbb{Z} \\
(\pi-\pi / 6)+2 n \pi & n \in \mathbb{Z}
\end{array}\right.
$$

We can rewrite the equation as $\sin \theta=\sin \pi / 6$. By the same argument, the general solution of the equation $\sin \theta=\sin \alpha$ is

$$
\theta=\left\{\begin{array}{cc}
\alpha+2 n \pi & n \in \mathbb{Z} \\
(\pi-\alpha)+2 n \pi & n \in \mathbb{Z}
\end{array}\right.
$$

Example Find the general solution of $\sin \theta=1 / \sqrt{2}$. Write $1 / \sqrt{2}=\sin \alpha$: here $\alpha+\sin ^{-1}(1 / \sqrt{2})=\pi / 4$. Thus the general solution is

$$
\theta=\left\{\begin{array}{cc}
\pi / 4+2 n \pi & n \in \mathbb{Z} \\
(\pi-\pi / 4)+2 n \pi & n \in \mathbb{Z}
\end{array}\right.
$$

Analogously, the general solution of the equation $\cos \theta=\cos \alpha$ is

$$
\theta= \pm \alpha+2 n \pi \quad n \in \mathbb{Z}
$$

and the general solution of the equation $\tan \theta=\tan \alpha$ is

$$
\theta=\alpha+n \pi \quad n \in \mathbb{Z} .
$$

Example Find the general solution of $\tan \theta=3$. Write $3=\tan \alpha$: thus $\alpha=$ $\tan ^{-1}(3)=1.2490=0.3976 \pi$. Thus the general solution is $\theta=0.3976 \pi+n \pi$, or $\theta=(0.3976+n) \pi$. That is, the values of θ with $\tan \theta=3$ are $0.3976 \pi, 1.3976 \pi$, $2.3976 \pi, \ldots$ and $-0.6024 \pi,-1.6024 \pi,-2.6024 \pi$, etc.

A second type of trigonometric equation can be solved by a trick. These are equations of the form $a \cos \theta+b \sin \theta=c$, where a, b, and c are fixed. To solve this, consider a right-angled triangle with sides a and b, and hypoteneuse $R=\sqrt{a^{2}+b^{2}}$: let ϕ be the angle between a and $R\left(\right.$ so $\left.\phi=\tan ^{-1}(b / a)\right)$. Then $a=R \cos \phi$ and $b=R \sin \phi$. Thus

$$
a \cos \theta+b \sin \theta=R \cos \phi \cos \theta+R \sin \phi \sin \theta=R \cos (\theta-\phi) .
$$

Our equation therefore becomes

$$
\cos (\theta-\phi)=c / R
$$

which we can solve in the usual way. Writing $c / R=\cos \alpha$, we have

$$
\cos (\theta-\phi)=\cos \alpha
$$

which has general solution

$$
\theta-\phi= \pm \alpha+2 n \pi,
$$

or

$$
\theta= \pm \alpha+2 n \pi+\phi .
$$

Since $R=\sqrt{a^{2}+b^{2}}$ and $\phi=\tan ^{-1}(b / a)$, we have $\alpha=\cos ^{-1}\left(c / \sqrt{a^{2}+b^{2}}\right.$, so we can write the general solution of $a \cos \theta+b \sin \theta=c$ as

$$
\theta= \pm \cos ^{-1}\left(\frac{c}{\sqrt{a^{2}+b^{2}}}\right)+2 n \pi+\tan ^{-1} \frac{b}{a} .
$$

However, rather than remember this formula, it is better to work through the steps for each example.

Example Find the general solution of the equation $\cos \theta+2 \sin \theta=1$.
Consider the triangle with sides 1,2 , and $\sqrt{5}$, and let ϕ be the angle $\tan ^{-1} 2=1.1071$. Then $1=\sqrt{5} \cos \phi$ and $2=\sqrt{5} \sin \phi$. Hence $\cos \theta+2 \sin \theta=$ $\sqrt{5} \cos \theta \cos \phi+\sqrt{5} \sin \theta \sin \phi=\sqrt{5} \cos (\theta-\phi)$.

Solving $\cos \theta+2 \sin \theta=1$ is the same as solving $\sqrt{5} \cos (\theta-\phi)=1$, or $\cos (\theta-\phi)=1 / \sqrt{5}$. Now $\cos ^{-1}(1 / \sqrt{5})=1.1071$, so the general solution is

$$
\theta-\phi= \pm 1.1071+2 n \pi
$$

or

$$
\theta=\phi \pm 1.1071+2 n \pi=1.1071 \pm 1.1071+2 n \pi
$$

so $\theta=2 n \pi$ or $\theta=2.2142+2 n \pi$.
The first type of solution is easy to check: if $\theta=2 n \pi$ then $\sin \theta=0$ and $\cos \theta=1$, so $\cos \theta+2 \sin \theta=1$. For the second type, we can check that $\cos (2.2142)=-0.6$ and $\sin (2.2142)=0.8$, so $\cos (2.2142)+2 \sin (2.2142)=1$.

1.10 Polar Coordinates (2.6.6)

Sometimes, instead of describing a point P by its Cartesian coordinates (x, y) (the horizontal and vertical distances from the origin), it's convenient to represent it by its distance r and angle θ from the origin. Draw picture.

To convert from Cartesian to polar coordinates, use the formulae

$$
r=\sqrt{x^{2}+y^{2}} \quad \tan \theta=y / x
$$

and to convert from polar to Cartesian coordinates, use the formulae

$$
x=r \cos \theta \quad y=r \sin \theta .
$$

Examples Let P be the point with Cartesian coordinates $(2,1)$. To find its polar coordinates: $r=\sqrt{2^{2}+1^{2}}=\sqrt{5}$, and $\tan \theta=1 / 2$ so $\theta=\tan ^{-1}(1 / 2)=$ $0.4636(=0.1476 \pi)$. So the polar coordinates of P are $(r, \theta)=(\sqrt{5}, 0.1476 \pi)$.

Let P be the point with polar coordinates $(2, \pi / 3)$. To find its Cartesian coordinates: $x=2 \cos \pi / 3=2(1 / 2)=1$ and $y=2 \sin \pi / 3=2(\sqrt{3} / 2)=\sqrt{3}$.

Note:
a) When P is the origin, θ is not defined.
b) Beware when using the formula $\tan \theta=y / x$ to calculate θ : when you calculate $\tan ^{-1}(y / x)$ on your calculator, it will return the principal value of $\tan ^{-1}(y / x)$, which lies between $-\pi / 2$ and $\pi / 2$ (i.e. $x>0$). When determining θ, you have to look at the sign of x : if $x>0$ then $\theta=\tan ^{-1}(y / x)$; if $x<0$ then $\theta=\tan ^{-1}(y / x)+\pi$; if $x=0$ then $\theta=\pi / 2$ or $-\pi / 2$ depending on whether $y>0$ or $y<0$. For example, let P have Cartesian coordinates $(-2,-2)$. Then $r=\sqrt{8}$. If we work out $\tan ^{-1}(-2 /-2)=\tan ^{-1}(1)$, we get $\pi / 4$, which is clearly wrong. Since $x<0$, we have to add π to this to get θ : $\theta=5 \pi / 4$.

1.11 Limits (7.8, 7.9)

We look at the behaviour of $f(x)$ as x approaches a certain value. Let's start with some intuitive examples:

Examples

a) $f(x)=x^{2}$. Clearly when x is very close to $2, f(x)$ is very close to 4 . We say $f(x) \rightarrow 4$ as $x \rightarrow 2$, or $\lim _{x \rightarrow 2} f(x)=4$. (Boring: this is because x^{2} is continuous at $x=2$).
b) $f(x)=1 / x$. When x is negative and very close to $0, f(x)$ is a very large negative number. When x is postive and very close to $0, f(x)$ is a very large positive number. We say $\lim _{x \rightarrow 0-} f(x)=-\infty$ and $\lim _{x \rightarrow 0+} f(x)=$ ∞. Althoug we say this, $\lim _{x \rightarrow 0-} f(x)$ and $\lim _{x \rightarrow 0+}$ do not exist, strictly speaking, since the limit always has to be a number.
c) Now consider the Heaviside step function

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

We have $\lim _{x \rightarrow 0-} f(x)=0$ and $\lim x \rightarrow 0+f(x)=1$. Thus $\lim _{x \rightarrow 0} f(x)$ doesn't exist. However, if we look close to $x=2$ then clearly $\lim _{x \rightarrow 2} f(x)=$ 1.
d) Notice that the limit says nothing at all about $f(a)$ itself: if we defined a function by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 2 \\ 99 & \text { if } x=2\end{cases}
$$

Then we still have $\lim _{x \rightarrow 2} f(x)=4$, even though $f(2)=99$.

This motivates the definition of continuity:
The function $f(x)$ is continuous at $x=a$ if
a) a is in the maximal domain of $f(x)$.
b) $\lim _{x \rightarrow a} f(x)=f(a)$.
$f(x)$ is continuous if it is continuous at all values of x.

Examples $\quad f(x)=x^{2}$ is continuous. The Heaviside step function is continuous everywhere except at $x=0 . f(x)=1 / x$ is continuous everywhere except at $x=0$.

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 2 \\ 99 & \text { if } x=2\end{cases}
$$

is not continuous at $x=2$, since $\lim _{x \rightarrow 2} f(x)$ isn't equal to $f(2)$.

Some more examples: Rational functions

Example 1: $f(x)=\left(x^{2}+3\right) /(x-2)$ as $x \rightarrow 1$. Clearly when x is very close to $1, f(x)$ is very close to $f(1)=-4$. Hence $\lim _{x \rightarrow 1} f(x)=-4$, and $f(x)$ is continuous at $x=1$.

Example 2: $f(x)=\left(x^{2}+3\right) /(x-2)$ as $x \rightarrow 2$. When x is very close to 2 , then $x^{2}+3$ is very close to 7 . However as x gets closer and closer to 2 from above, $x-2$ becomes a smaller and smaller positive number. Hence $\lim _{x \rightarrow 2+} f(x)=\infty$. When x tends to 2 from below, $x-2$ becomes a smaller and smaller negative number: hence $\lim _{x \rightarrow 2-} f(x)=-\infty$.

Example 3: You should always try to simplify $f(x)$ before calculating the limit. Consider $f(x)=\left(x^{2}-1\right) /(x-1)$ as $x \rightarrow 1$. Simplifies to $f(x)=x+1$ provided that $x \neq 1$. Hence $\lim _{x \rightarrow 1} f(x)=2$. Note, however, that $f(x)$ is not continuous at $x=1$, since $f(1)=\left(1^{2}-1\right) /(1-1)$ is not defined, i.e. 1 isn't in the maximal domain of $f(x)$.

A very important example: $\operatorname{sinc} x$

Consider the function $f(x)=\sin x / x$ as $x \rightarrow 0$. Show graph. Appears that $\lim _{x \rightarrow 0} \sin x / x=1$. Give geometric interpretation.

Notice that $f(x)$ is not continuous at $x=0$, since $f(0)=\sin 0 / 0$ is not defined. However, we can define a new function

$$
\operatorname{sinc} x= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Then $\operatorname{sinc} x$ is continuous at $x=0$.
Another type of example can be solved using a trick. Consider $f(x)=$ $\sin 2 x / x$. Then we can write $f(x)=2 \sin 2 x / 2 x$. As $x \rightarrow 0,2 x \rightarrow 0$ also, so $\sin 2 x / 2 x \rightarrow 1$ as $x \rightarrow 0$. Hence $f(x) \rightarrow 2$ as $x \rightarrow 0$.

Limits as $x \rightarrow \pm \infty$

Sometimes these limits exist: $\lim _{x \rightarrow \infty} 1 / x=0, \lim _{x \rightarrow-\infty} 1 / x=0$. Sometimes they don't: $\lim _{x \rightarrow \infty} \sin x$ doesn't exist.

If f is a non-constant polynomial, then $\lim _{x \rightarrow+\infty} f(x)$ is equal to $+\infty$ or $-\infty$, depending on the sign of the highest degree term, and similarly for $\lim _{x \rightarrow-\infty} f(x)$. So strictly speaking, the limit does not exist, asince $\pm \infty$ are not numbers.
a) $f(x)=x^{2}+3 x+3 \sim x^{2} \rightarrow+\infty$ as $x \rightarrow+\infty$ and as $x \rightarrow-\infty$.
b) $f(x)=2 x^{3}-3 x^{2}-2=\sim 2 x^{3} \rightarrow+\infty$ as $x \rightarrow+\infty$ and $\rightarrow-\infty$ as $x \rightarrow-\infty$.

For a rational function f, it depends on the degrees of the polynomial on the top and bottom.
a) If the degree of the numerator of f is greater than the degree of th denominator of f, then $\lim _{x \rightarrow+\infty} f(x)=+\infty$ or $-\infty$ depending on the signs of the highest degree terms in numerator and denominator, and similarly for $\lim _{x \rightarrow-\infty} f(x)$.

$$
\begin{aligned}
f(x) & =\frac{x^{3}+1}{3 x^{2}-2 x+1} \\
& \sim \frac{x^{3}}{3 x^{2}} \\
& =\frac{x}{3}
\end{aligned}
$$

so $f(x) \rightarrow+\infty$ as $x \rightarrow+\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$.
b) If the degree of the numerator is less than the degree of the denominator, then the limit is 0 :

$$
\begin{aligned}
f(x) & =\frac{x^{3}+1}{2 x^{4}-x^{2}+2} \\
& \sim \frac{x^{3}}{2 x^{4}} \\
& =\frac{1}{2 x}
\end{aligned}
$$

so $f(x) \rightarrow 0$ as $x \rightarrow+\infty$ and as $x \rightarrow-\infty$.
c) If the degrees are the same, the limit is a non-zero real number:

$$
\begin{aligned}
f(x) & =\frac{x^{3}+1}{2 x^{3}-3 x+2} \\
& \sim \frac{x^{3}}{2 x^{3}} \\
& =\frac{1}{2}
\end{aligned}
$$

so $f(x) \rightarrow 1 / 2$ as $x \rightarrow+\infty$ and as $x \rightarrow-\infty$.

The sandwich rule

Suppose that $g(x) \leq f(x) \leq h(x)$ for all large x, and that $g(x) \rightarrow 0$ and $h(x) \rightarrow 0$ as $x \rightarrow \infty$. Then $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

Example Consider $f(x)=\sin x / x$ as $x \rightarrow \infty$. Since $\sin x$ always lies between -1 and 1 , we have

$$
\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
$$

for all $x>0$, and hence $\sin x / x \rightarrow 0$ as $x \rightarrow \infty$.

Asymptotes

Recall that we talked about horizontal and vertical asymptotes earlier: for example $f(x)=1 /(x-1)$ has a vertical asymptote $x=1$ and a horizontal asymptote $y=0$. We can now define these terms:

The line $x=a$ is a vertical asymptote of $f(x)$ if $\lim _{x \rightarrow a-} f(x)= \pm \infty$ or $\lim _{x \rightarrow a+} f(x)= \pm \infty$ or both.

The line $y=b$ is a horizontal asymptote of $f(x)$ if $\lim _{x \rightarrow+\infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$ or both.

