
Chapter 1

Functions and Graphs

1.1 Numbers (1.2.1, 1.2.4)

The most fundamental type of number are those we use to count with: 0, 1, 2, . . ..
These are called the natural numbers: the set of all natural numbers is denoted
N.

N = {0, 1, 2, 3, . . .}.

Next we encounter the whole numbers or integers: the set of all integers is
denoted Z.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Clearly every natural number is an integer: that is N ⊂ Z.
Third, there are the fractions or rational numbers: the set of all rational

numbers is denoted Q. The rational numbers are those which can be written in
the form p/q, where p and q are integers and q 6= 0. In set notation,

Q = {p
q

: p, q ∈ Z, q 6= 0}.

Since any integer n can be written as n/1, every integer is a rational number:
that is Z ⊆ Q.

Finally there are the real numbers: all numbers which can be written with
a decimal expansion. The set of all real numbers is denoted R. Not every real
number is rational: for example

√
2 and π can’t be written in the form p/q.

Such real numbers are called irrational.
Thus we have

N ⊂ Z ⊂ Q ⊂ R.

Later on we’ll come across the Complex numbers C.
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Interval notation

Interval notation is a very convenient way of denoting sets of real numbers. If a
and b are real numbers with a ≤ b, we write [a, b] for the set of all real numbers
x with a ≤ x ≤ b. That is,

[a, b] = {x ∈ R: a ≤ x ≤ b}.

Notice that this is really a collection of real numbers: thus [1, 4] does not
just contain the numbers 1, 2, 3, 4, but everything between 1 and 4 (for example,
π).

Similarly we use the notation (a, b) for the same set excluding the endpoints:

(a, b) = {x ∈ R: a < x < b}.

We can mix square and round brackets:

[a, b) = {x ∈ R: a ≤ x < b}.

(a, b] = {x ∈ R: a < x ≤ b}.

When we don’t want an upper or lower limit, we can use the symbol ∞:

[a,∞) = {x ∈ R: a ≤ x}

(−∞, b) = {x ∈ R:x < b}

You should never put a square bracket next to∞ or −∞: ∞ is a convenient
symbol, but it is not a real number.

1.2 Functions, Domain and Range (2.1, 2.2)

We often write expressions like y = f(x). Here f is a function: we regard f as a
machine, which, when we feed it a real number x, either spits out another real
number f(x) or tells us it doesn’t like x. For example, if f(x) = 1/x, then if we
feed f any real number x 6= 0, spits out the real number 1/x: if we accidentally
feed it x = 0, it complains (remember ∞ is not a real number).

Since we don’t want our machine to complain, we have to be careful only to
feed it allowable numbers.

The Maximal Domain of f is the set of all inputs x which don’t make the
machine complain (so f(x) is a real number). Thus the maximal domain of
f(x) = 1/x is (−∞, 0) ∪ (0,∞). Sometimes we want to restrict the choice of
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inputs: a domain of f is any set of allowed inputs x: thus [2, 5] is a domain of
f(x) = 1/x, but [−2, 2] is not (it contains 0, which is disallowed).

The Range of f is the set of possible output values y.
The zeros of f are all the possible input values x such that the output

f(x) = 0. Also called roots.

1.3 Polynomials (2.4)

Polynomials are a very simple type of function:

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n.

The degree of the polynomial is the largest power of x that appears.

1. Degree 0: constants f(x) = c0.

2. Degree 1: linear functions f(x) = c0 + c1x.

3. Degree 2: quadratics f(x) = c0 + c1x+ c2x
2.

4. Degree 3: cubics f(x) = c0 + c1x+ c2x
2 + c3x

3.

Examples f(x) = x2 − 4. Draw graph. The maximal domain is R. The
range is [−4,∞). Two zeros, ±2.

f(x) = x3 − 3x. Draw graph. The maximal domain is R. The range is R.
Three zeros, 0 and ±

√
3.

The maximal domain of a polynomial is always R. Polynomials are also
continuous (you can draw the graph without taking your pen off the paper) and
smooth (there are no sharp corners in the graph).

1.4 Rational functions (2.5)

A rational function is one which can be written in the form

f(x) =
g(x)
h(x)

,

where g(x) and h(x) are polynomials.

Example
x3 − 3x2 + 5
2x4 + x− 3

.
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Unlike polynomials, the maximal domain of a rational function may not be
R: they explode whenever h(x) = 0. The zeros of a rational function are exactly
the points where g(x) = 0.

Examples f(x) = 1/x. Draw graph. The maximal domain is (−∞, 0) ∪
(0,∞). The range is (−∞, 0) ∪ (0,∞). The line x = 0 is a vertical asymptote.
f is not continuous: it jumps at x = 0. f has no zeros.

f(x) = (x+ 2)/(x− 1)2. Don’t try to draw graph. The maximal domain is
(−∞, 1) ∪ (1,∞). f has one zero, at x = −2.

1.5 Modulus (1.2.4)

The modulus |x| of a real number x is just its size: thus |x| = x if x ≥ 0, and
|x| = −x if x < 0.

Examples f(x) = |x|. Draw graph. The maximal domain in R. The range
is [0,∞). There is one zero, at x = 0. f is continuous, but not smooth (there is
a sharp corner at x = 0).

f(x) = |x2 − 4|. Draw graph. The maximal domain is R. The range is
[0,∞). There are two zeros, at x = ±2. f is continuous, but not smooth.

f(x) = |x2 + 1| is just the same as f(x) = x2 + 1.

1.6 Even and Odd Functions (2.2.4)

An even function f(x) is one for which f(−x) = f(x) for all values of x (in the
maximal domain). Thus the graph to the left of the y-axis can be obtained from
the graph to the right by reflecting in the y-axis.

Examples are x2, |x|, x4 + 2x2 + 3, any polynomial with only even powers.
An odd function f(x) is one for which f(−x) = −f(x) for all values of x (in

the maximal domain). Thus the graph to the left of the y-axis can be obtained
from the graph to the right by rotating about the origin.

Examples are x, 1/x, x3 − 3x, any polynomial with only odd powers.
Unlike numbers, most functions are neither even nor odd. Example f(x) =

x− 3. Any polynomial with both even and odd powers is neither even nor odd.
To decide whether a function f(x) is even, odd, or neither, work out f(−x)

and decide whether it is equal to f(x), to −f(x), or to neither of these.

Examples: f(x) = x
x+2 , f(x) = sin(x3), f(x) = sin(|x|), f(x) = sin(x)

x . Note
last is not defined at x = 0.
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1.7 Increasing and Decreasing functions (2.2.1)

f(x) is increasing on an interval [a, b] if f(x1) ≤ f(x2) whenever a ≤ x1 < x2 ≤
b. Intuitively, the graph slopes upwards in [a, b], but may have flat bits. It is
strictly increasing if f(x1) < f(x2) whenever x1 < x2. (There are no flat bits).

f(x) is decreasing on [a, b] if f(x1) ≥ f(x2) whenever a ≤ x1 < x2 ≤ b, and
strictly decreasing if f(x1) > f(x2) whenever x1 < x2.

Example f(x) = x2−3 is strictly increasing on [0,∞) (and indeed on [3, 7]),
and strictly decreasing on (−∞, 0] (and indeed on [−π,−

√
2].) It is neither

increasing nor decreasing on [−1, 1].

1.8 Inverse functions (2.2.2)

Suppose f is a function: that is, if we input a real number x, it outputs a real
number y. The inverse function f−1 is the function which takes the output of
f and tells us what the input was. Thus if y = f(x) then x = f−1(y).

Example f(x) = x+ 3. Then f−1(x) = x− 3. (If y = x+ 3, then x = y− 3,
so f−1(y) = y − 3. However a function doesn’t care what letter I use to define
it, so we can also write f−1(x) = x− 3.) Draw graphs.

Thus determining the inverse function boils down to solving the equation
y = f(x) for x in terms of y.

Example f(x) = x/(x−2). To find the inverse function, write y = x/(x−2)
and solve for x. y(x− 2) = x, yx−x = 2y, x(y− 1) = 2y, x = 2y/(y− 1). Thus
f−1(y) = 2y/(y − 1), or f−1(x) = 2x/(x− 1). Show graphs.

Notice the reflection rule: since finding the inverse function is just inter-
changing the roles of x and y, the graph of f−1(x) is the graph of f(x) reflected
in the line y = x.

Problem: not every function has an inverse. Consider for example f(x) = x2.
Should we say that f−1(4) = 2, or −2? We can’t decide. Can see this problem
on the graphs: draw graph of x2 and reflection in y = x. The problem is that
f(x) = x2 is two to one: there are two values of x which give rise to each value
f(x).

We say that f(x) is one to one (or 1− 1) if different values of x always give
different values of f(x): that is, if x1 6= x2, then f(x1) 6= f(x2).
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One to one functions f(x) always have inverses: the maximal domain of
f−1(x) is the range of f(x), so may not be the same as the maxiaml domain of
f(x).

Examples f(x) = x3 is 1 − 1. The maximal domain and the range of f(x)
are R, and the same is true of f−1(x) = 3

√
x.

f(x) = ex is 1 − 1. f(x) has maximal domain R, and range (0,∞). The
inverse f−1(x) = ln(x) has maximal domain (0,∞), and range R. (Pretend we
know about these functions for now.)

If f(x) is not 1−1, and we want to talk about its inverse, we have to restrict
the domain of f(x) to one where it is 1− 1.

Example f(x) = x2 is not 1 − 1 on its maximal domain, but it is 1 − 1
on the domain [0,∞). If we restrict to this domain, then f(x) has an inverse
f−1(x) = +

√
x. Draw graphs. (Could just as well have chosen other domain).

Note: if f(x) is continuous, then it is 1− 1 on an interval precisely when it
is either strictly increasing or strictly decreasing there. Pictures.

1.9 Trigonometric Functions (2.6)

Draw a circle of radius 1, and pick a point P = (x, y) on the circle, at angle θ
to the horizontal.

Then sin θ = y, cos θ = x, and tan θ = y/x(= sin θ/ cos θ).
Notice that −1 ≤ sin θ, cos θ ≤ 1 for any value of θ: i.e. the range of sin and

cos is [−1, 1]. On the other hand, tan θ can take any real value: the range of
tan is R.

By pythagoras’s theorem, sin2 θ + cos2 θ = 1.
You should always express angles in radians rather than degrees: there are

very good reasons for this, which will become clear during the course. Remember
that a full revolution (360 degrees) is 2π radians, so (give values of 180, 90, 60,
30 degrees).

Special angles: (Use 30-60-90 and 45-45-90 rules)

0 π/6 π/4 π/3 π/2
sin 0 1/2 1/

√
2
√

3/2 1
cos 1

√
3/2 1/

√
2 1/2 0

tan 0 1/
√

3 1
√

3

6



Graphs of the trigonometric functions

Draw graphs of sin θ, cos θ and tan θ. Note that cos is even and sin and tan are
odd.

A function f(x) is periodic with period T or T -periodic if f(x + T ) = f(x)
for all x.

Thus sin and cos are 2π-periodic, tan is π-periodic.
Also define cot θ = 1/ tan θ = cos θ/ sin θ, cosec θ = 1/ sin θ and sec θ =

1/ cos θ.
Draw graph of cot θ: odd and π-periodic.

Trigonometric identities

Hand out trigonometric identities and talk about them.
We can derive other identities from these.

Example To get an expression for cos(3θ) in terms of cos θ, write cos(3θ) =
cos(2θ + θ), and observe

cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ (4)

= (2 cos2 θ − 1) cos θ − 2 sin θ cos θ sin θ (10, 11)

= 2 cos3 θ − cos θ − 2 sin2 θ cos θ

= 2 cos3 θ − cos θ − 2(1− cos2 θ) cos θ (1)

= 2 cos3 θ − cos θ − 2 cos θ + 2 cos3 θ

= 4 cos3 θ − 3 cos θ.

Check: Try θ = 0. Then cos 3θ = cos 0 = 1, and cos θ = 1, so the right
hand side is 4(1)3 − 3 = 4 − 3 = 1. So this checks. Try θ = π/3. Then
cos 3θ = cosπ = −1, while cos θ = cosπ/3 = 1/2. Thus the right hand side is
4(1/2)3 − 3/2 = 1/2− 3/2 = −1. So this checks.

Inverse trigonometric functions

The trigonometric functions are periodic, and so are “∞ to 1”. In order to
consider their inverse functions, we have to restrict their domain to a principal
domain, just as we did for f(x) = x2.

The principal domain of y = sinx (draw graph) is [−π/2, π/2]. Thus the
principal value of sin−1 x lies in [−π/2, π/2]. (There are infinitely many angles
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whose sine is x: we pick the one which lies between −π/2 and π/2.) Draw
graph. Maximal domain [−1, 1], range [−π/2, π/2].

The principal domain of y = cosx (draw graph) is [0, π]. Thus the principal
value of cos−1 x lies in [0, π]. Draw graph. Maximal domain [−1, 1], range [0, π].

The principal domain of y = tanx (draw graph) is [−π/2, π/2]. Thus the
principal value of tan−1 x lies in [−π/2, π/2]. Draw graph. Maximal domain R,
range [−π/2, π/2].

NB On your calculator, sin−1 x, cos−1 x and tan−1 x may be called arcsinx,
arccosx, and arctanx. Your calculator should automatically give the principal
values of these functions. Make sure it’s set on radians.

Trigonometric Equations

Consider solving the equation sin θ = 1/2 for θ. One solution is θ = sin−1(1/2) =
π/6. However there are infinitely many other solutions (draw graph). These are
π/6 + 2nπ, where n is any integer, and (π−π/6) + 2nπ, where n is any integer.
Thus the general solution of sin θ = 1/2 is

θ =
{

π/6 + 2nπ n ∈ Z
(π − π/6) + 2nπ n ∈ Z.

We can rewrite the equation as sin θ = sinπ/6. By the same argument, the
general solution of the equation sin θ = sinα is

θ =
{

α+ 2nπ n ∈ Z
(π − α) + 2nπ n ∈ Z.

Example Find the general solution of sin θ = 1/
√

2. Write 1/
√

2 = sinα:
here α+ sin−1(1/

√
2) = π/4. Thus the general solution is

θ =
{

π/4 + 2nπ n ∈ Z
(π − π/4) + 2nπ n ∈ Z.

Analogously, the general solution of the equation cos θ = cosα is

θ = ±α+ 2nπ n ∈ Z,

and the general solution of the equation tan θ = tanα is

θ = α+ nπ n ∈ Z.
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Example Find the general solution of tan θ = 3. Write 3 = tanα: thus α =
tan−1(3) = 1.2490 = 0.3976π. Thus the general solution is θ = 0.3976π+nπ, or
θ = (0.3976 +n)π. That is, the values of θ with tan θ = 3 are 0.3976π, 1.3976π,
2.3976π, . . . and −0.6024π, −1.6024π, −2.6024π, etc.

A second type of trigonometric equation can be solved by a trick. These
are equations of the form a cos θ + b sin θ = c, where a, b, and c are fixed. To
solve this, consider a right-angled triangle with sides a and b, and hypoteneuse
R =

√
a2 + b2: let φ be the angle between a and R (so φ = tan−1(b/a)). Then

a = R cosφ and b = R sinφ. Thus

a cos θ + b sin θ = R cosφ cos θ +R sinφ sin θ = R cos(θ − φ).

Our equation therefore becomes

cos(θ − φ) = c/R,

which we can solve in the usual way. Writing c/R = cosα, we have

cos(θ − φ) = cosα,

which has general solution

θ − φ = ±α+ 2nπ,

or
θ = ±α+ 2nπ + φ.

Since R =
√
a2 + b2 and φ = tan−1(b/a), we have α = cos−1(c/

√
a2 + b2, so

we can write the general solution of a cos θ + b sin θ = c as

θ = ± cos−1(
c√

a2 + b2
) + 2nπ + tan−1 b

a
.

However, rather than remember this formula, it is better to work through
the steps for each example.

Example Find the general solution of the equation cos θ + 2 sin θ = 1.
Consider the triangle with sides 1, 2, and

√
5, and let φ be the angle

tan−1 2 = 1.1071. Then 1 =
√

5 cosφ and 2 =
√

5 sinφ. Hence cos θ + 2 sin θ =√
5 cos θ cosφ+

√
5 sin θ sinφ =

√
5 cos(θ − φ).

Solving cos θ + 2 sin θ = 1 is the same as solving
√

5 cos(θ − φ) = 1, or
cos(θ − φ) = 1/

√
5. Now cos−1(1/

√
5) = 1.1071, so the general solution is

θ − φ = ±1.1071 + 2nπ,
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or
θ = φ± 1.1071 + 2nπ = 1.1071± 1.1071 + 2nπ

so θ = 2nπ or θ = 2.2142 + 2nπ.
The first type of solution is easy to check: if θ = 2nπ then sin θ = 0 and

cos θ = 1, so cos θ + 2 sin θ = 1. For the second type, we can check that
cos(2.2142) = −0.6 and sin(2.2142) = 0.8, so cos(2.2142) + 2 sin(2.2142) = 1.

1.10 Polar Coordinates (2.6.6)

Sometimes, instead of describing a point P by its Cartesian coordinates (x, y)
(the horizontal and vertical distances from the origin), it’s convenient to repre-
sent it by its distance r and angle θ from the origin. Draw picture.

To convert from Cartesian to polar coordinates, use the formulae

r =
√
x2 + y2 tan θ = y/x,

and to convert from polar to Cartesian coordinates, use the formulae

x = r cos θ y = r sin θ.

Examples Let P be the point with Cartesian coordinates (2, 1). To find its
polar coordinates: r =

√
22 + 12 =

√
5, and tan θ = 1/2 so θ = tan−1(1/2) =

0.4636(= 0.1476π). So the polar coordinates of P are (r, θ) = (
√

5, 0.1476π).
Let P be the point with polar coordinates (2, π/3). To find its Cartesian

coordinates: x = 2 cosπ/3 = 2(1/2) = 1 and y = 2 sinπ/3 = 2(
√

3/2) =
√

3.

Note:

a) When P is the origin, θ is not defined.

b) Beware when using the formula tan θ = y/x to calculate θ: when you cal-
culate tan−1(y/x) on your calculator, it will return the principal value of
tan−1(y/x), which lies between −π/2 and π/2 (i.e. x > 0). When determin-
ing θ, you have to look at the sign of x: if x > 0 then θ = tan−1(y/x); if
x < 0 then θ = tan−1(y/x) + π; if x = 0 then θ = π/2 or −π/2 depending
on whether y > 0 or y < 0. For example, let P have Cartesian coordinates
(−2,−2). Then r =

√
8. If we work out tan−1(−2/− 2) = tan−1(1), we get

π/4, which is clearly wrong. Since x < 0, we have to add π to this to get θ:
θ = 5π/4.
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1.11 Limits (7.8, 7.9)

We look at the behaviour of f(x) as x approaches a certain value. Let’s start
with some intuitive examples:

Examples

a) f(x) = x2. Clearly when x is very close to 2, f(x) is very close to 4. We
say f(x) → 4 as x → 2, or limx→2 f(x) = 4. (Boring: this is because x2 is
continuous at x = 2).

b) f(x) = 1/x. When x is negative and very close to 0, f(x) is a very large
negative number. When x is postive and very close to 0, f(x) is a very
large positive number. We say limx→0− f(x) = −∞ and limx→0+ f(x) =
∞. Althoug we say this, limx→0− f(x) and limx→0+ do not exist, strictly
speaking, since the limit always has to be a number.

c) Now consider the Heaviside step function

f(x) =
{

0 if x < 0
1 if x ≥ 0.

We have limx→0− f(x) = 0 and limx→ 0+f(x) = 1. Thus limx→0 f(x)
doesn’t exist. However, if we look close to x = 2 then clearly limx→2 f(x) =
1.

d) Notice that the limit says nothing at all about f(a) itself: if we defined a
function by

f(x) =
{
x2 if x 6= 2
99 if x = 2,

Then we still have limx→2 f(x) = 4, even though f(2) = 99.

This motivates the definition of continuity:
The function f(x) is continuous at x = a if

a) a is in the maximal domain of f(x).

b) limx→a f(x) = f(a).

f(x) is continuous if it is continuous at all values of x.
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Examples f(x) = x2 is continuous. The Heaviside step function is continu-
ous everywhere except at x = 0. f(x) = 1/x is continuous everywhere except
at x = 0.

f(x) =
{
x2 if x 6= 2
99 if x = 2

is not continuous at x = 2, since limx→2 f(x) isn’t equal to f(2).

Some more examples: Rational functions

Example 1: f(x) = (x2 + 3)/(x− 2) as x → 1. Clearly when x is very close to
1, f(x) is very close to f(1) = −4. Hence limx→1 f(x) = −4, and
f(x) is continuous at x = 1.

Example 2: f(x) = (x2 + 3)/(x− 2) as x→ 2. When x is very close to 2, then
x2+3 is very close to 7. However as x gets closer and closer to 2 from
above, x−2 becomes a smaller and smaller positive number. Hence
limx→2+ f(x) =∞. When x tends to 2 from below, x−2 becomes a
smaller and smaller negative number: hence limx→2− f(x) = −∞.

Example 3: You should always try to simplify f(x) before calculating the limit.

Consider f(x) = (x2−1)/(x−1) as x→ 1. Simplifies to f(x) = x+1
provided that x 6= 1. Hence limx→1 f(x) = 2. Note, however, that
f(x) is not continuous at x = 1, since f(1) = (12−1)/(1−1) is not
defined, i.e. 1 isn’t in the maximal domain of f(x).

A very important example: sincx

Consider the function f(x) = sinx/x as x → 0. Show graph. Appears that
limx→0 sinx/x = 1. Give geometric interpretation.

Notice that f(x) is not continuous at x = 0, since f(0) = sin 0/0 is not
defined. However, we can define a new function

sincx =
{

sin x
x if x 6= 0

1 if x = 0.

Then sincx is continuous at x = 0.
Another type of example can be solved using a trick. Consider f(x) =

sin 2x/x. Then we can write f(x) = 2 sin 2x/2x. As x → 0, 2x → 0 also, so
sin 2x/2x→ 1 as x→ 0. Hence f(x)→ 2 as x→ 0.
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Limits as x→ ±∞

Sometimes these limits exist: limx→∞ 1/x = 0, limx→−∞ 1/x = 0. Sometimes
they don’t: limx→∞ sinx doesn’t exist.

If f is a non-constant polynomial, then limx→+∞ f(x) is equal to +∞
or −∞, depending on the sign of the highest degree term, and similarly for
limx→−∞ f(x). So strictly speaking, the limit does not exist, asince ±∞ are
not numbers.

a) f(x) = x2 + 3x+ 3 ∼ x2 → +∞ as x→ +∞ and as x→ −∞.

b) f(x) = 2x3 − 3x2 − 2 =∼ 2x3 → +∞ as x→ +∞ and → −∞ as x→ −∞.

For a rational function f , it depends on the degrees of the polynomial on
the top and bottom.

a) If the degree of the numerator of f is greater than the degree of th denom-
inator of f , then limx→+∞ f(x) = +∞ or −∞ depending on the signs of
the highest degree terms in numerator and denominator, and similarly for
limx→−∞ f(x).

f(x) =
x3 + 1

3x2 − 2x+ 1

∼ x3

3x2

=
x

3
,

so f(x)→ +∞ as x→ +∞ and f(x)→ −∞ as x→ −∞.

b) If the degree of the numerator is less than the degree of the denominator,
then the limit is 0:

f(x) =
x3 + 1

2x4 − x2 + 2

∼ x3

2x4

=
1

2x
,

so f(x)→ 0 as x→ +∞ and as x→ −∞.

13



c) If the degrees are the same, the limit is a non-zero real number:

f(x) =
x3 + 1

2x3 − 3x+ 2

∼ x3

2x3

=
1
2
,

so f(x)→ 1/2 as x→ +∞ and as x→ −∞.

The sandwich rule

Suppose that g(x) ≤ f(x) ≤ h(x) for all large x, and that g(x) → 0 and
h(x)→ 0 as x→∞. Then f(x)→ 0 as x→∞.

Example Consider f(x) = sinx/x as x→∞. Since sinx always lies between
−1 and 1, we have

−1
x
≤ sinx

x
≤ 1
x

for all x > 0, and hence sinx/x→ 0 as x→∞.

Asymptotes

Recall that we talked about horizontal and vertical asymptotes earlier: for exam-
ple f(x) = 1/(x−1) has a vertical asymptote x = 1 and a horizontal asymptote
y = 0. We can now define these terms:

The line x = a is a vertical asymptote of f(x) if limx→a− f(x) = ±∞ or
limx→a+ f(x) = ±∞ or both.

The line y = b is a horizontal asymptote of f(x) if limx→+∞ f(x) = b or
limx→−∞ f(x) = b or both.
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