1. The maximal domain is \mathbf{R} and the range is $[-1,1]$ (1 mark each).

The graph is shown below (1 mark). It crosses the x-axis at $x=(2 n+1) \pi / 2$ for $n \in \mathbf{Z}$ and the y-axis at $y=1$ (1 mark).

2. We have $f(0)=0, f^{\prime}(x)=\frac{3}{3 x+1}$, so $f^{\prime}(0)=3$, and $f^{\prime \prime}(x)=-\frac{9}{(1+3 x)^{2}}$, so $f^{\prime \prime}(0)=-9$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$.
Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=3 x-\frac{9}{2} x^{2}+\cdots .
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$. 1 mark for not saying $f(x)=3 x-\frac{9}{2} x^{2}$).
3. (a) $r=\sqrt{4+4}=\sqrt{8}(1 \mathrm{mark})$ and $\tan \theta=2 /-2=-1$, so since $x<0$ we have $\theta=\tan ^{-1}(-1)+\pi=-\pi / 4+\pi=3 \pi / 4$ (3 marks).
(b) $x=2 \cos (\pi / 3)=1$ and $y=2 \sin (\pi / 3)=\sqrt{3}$. (1 mark each)

Subtract one mark for each answer not given exactly.
4.

$$
\begin{aligned}
\int_{1}^{4}\left(\sinh x+x^{2}\right) d x & =\left[\cosh x+\frac{1}{3} x^{3}\right]_{1}^{4} \quad(3 \text { marks }) \\
& =\left(\cosh 4+\frac{64}{3}\right)-\left(\cosh 1+\frac{1}{3}\right) \\
& =46.765 \quad(2 \text { marks })
\end{aligned}
$$

to three decimal places.
5. Differentiating the equation with respect to x gives

$$
3 x^{2}+2 x y+x^{2} \frac{d y}{d x}-3 y^{2}-6 x y \frac{d y}{d x}=0 \quad(3 \text { marks }) .
$$

Hence

$$
\frac{d y}{d x}=\frac{3 y^{2}-2 x y-3 x^{2}}{x^{2}-6 x y} \quad(2 \text { marks }) .
$$

Thus $\frac{d y}{d x}$ is equal to $2 / 5$ when $(x, y)=(1,1)$. (1 mark).
The equation of the tangent at this point is therefore

$$
y=\frac{2}{5}(x-1)+1=\frac{2}{5} x+\frac{3}{5} \quad(2 \text { marks }) .
$$

6. (a) By the product rule,

$$
\frac{d}{d x}\left(x^{3} \sinh x\right)=3 x^{2} \sinh x+x^{3} \cosh x . \quad(2 \text { marks })
$$

(b) By the chain rule,

$$
\begin{aligned}
\frac{d}{d x}\left((1+\cos x)^{5}\right) & =5(1+\cos x)^{4}(-\sin x) \\
& =-5 \sin x(1+\cos x)^{4} \quad(2 \text { marks })
\end{aligned}
$$

(c) By the quotient rule,

$$
\begin{align*}
\frac{d}{d x}\left(\frac{x^{3}}{2+\cos x}\right) & =\frac{3 x^{2}(2+\cos x)-x^{3}(-\sin x)}{(2+\cos x)^{2}} \\
& =\frac{x^{2}(6+3 \cos x+x \sin x)}{(2+\cos x)^{2}} \tag{2marks}
\end{align*}
$$

7. Stationary points are given by solutions of $f^{\prime}(x)=0$, i.e. when

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)=0 .
$$

So there are two stationary points, namely $x=1,3$. (3 marks, 1 for the derivative and 2 for the solution.)
To determine their natures, $f^{\prime \prime}(x)=6 x-12$ so $f^{\prime \prime}(1)<0$ i.e. $x=1$ is a local maximum and $f^{\prime \prime}(3)>0$ i.e $x=3$ is a local minimum. (2 marks, 1 for each stationary point).
8.

$$
\begin{aligned}
z_{1}+z_{2} & =4-j \quad(1 \text { mark }) \\
z_{1}-z_{2} & =-2+3 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(1+j)(3-2 j)=3+3 j-2 j-2 j^{2}=5+j \quad(2 \text { marks }) \\
z_{1} / z_{2} & =\frac{1+j}{3-2 j}=\frac{(1+j)(3+2 j)}{(3-2 j)(3+2 j)}=\frac{1+5 j}{13} \quad(2 \text { marks }) .
\end{aligned}
$$

9. $\cos ^{-1}(1 / \sqrt{2})=\pi / 4$ (1 mark). The general solution of $\cos \theta=1 / \sqrt{2}$ is

$$
\theta= \pm \pi / 4+2 n \pi \quad(n \in \mathbf{Z}) \quad(3 \text { marks })
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\mathbf{i}+4 \mathbf{j}+2 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =-3 \mathbf{i}+2 \mathbf{j} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{1^{2}+3^{2}+1^{2}}=\sqrt{11} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =-2+3+1=2 \quad(1 \text { mark }) .
\end{aligned}
$$

Hence the angle θ between \mathbf{a} and \mathbf{b} is $\cos ^{-1}(2 / \sqrt{11} \sqrt{6})=1.322$ (1 mark).
11. The Maclaurin series expansion of $\cos x$ is

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \quad(2 \text { marks })
$$

Hence
(a)

$$
x^{2} \cos x=x^{2}-\frac{x^{4}}{2!}+\cdots \quad(2 \text { marks })
$$

(b)

$$
\cos (2 x)=1-2 x^{2}+\frac{2 x^{4}}{3}-\cdots \quad(3 \text { marks })
$$

(c)

$$
\begin{equation*}
(\cos x)^{2}=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)^{2}=1-x^{2}+\frac{x^{4}}{3}-\cdots \tag{5marks}
\end{equation*}
$$

We have

$$
(\cos (0.1))^{2}=1-\frac{0.01}{2}+\frac{0.0001}{3}-\cdots=0.990033
$$

to 6 decimal places. (3 marks)
12. The radius of the convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists. In this case $a_{n}=1 /\left(n^{4} 4^{n}\right)$, so

$$
\left|a_{n} / a_{n+1}\right|=\frac{(n+1)^{4} 4^{n+1}}{n^{4} 4^{n}}=4\left(\frac{n+1}{n}\right)^{4}
$$

which tends to 4 as $n \rightarrow \infty$. Hence $R=4$. (8 marks).
When $x=-4$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{4}}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$. (3 marks)
When $x=4$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n^{4}},
$$

which converges by comparison with

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}},
$$

(whose convergence is a standard result). (3 marks).
Hence the series converges if and only if $-4 \leq x \leq 4$. (1 mark).
13. The graphs are as shown:

(5 marks).
Between 0 and 2 the function $x^{2}-1$ increases monotonically from -1 to 3 whereas $\cos x$ decreases monotonically from 1 to $\cos 2<0$. Hence they must cross once in this range. For $x>2$ we have $x^{2}-1>3$ and $\cos x \leq 1$ so there are no further solutions. Since both functions are even there is also exactly one negative solution. (3 marks).
We have $f^{\prime}(x)=2 x+\sin x$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-1-\cos x_{n}}{2 x_{n}+\sin x_{n}} \quad(3 \text { marks }) .
$$

Hence with $x_{0}=1.2$

$$
\begin{aligned}
& x_{1}=1.176698 . \\
& x_{2}=1.176502 . \\
& x_{3}=1.176502 .
\end{aligned}
$$

(1 mark each).
Since the functions are even the negative solution is $-\alpha$ where α is the positive solution. Hence -1.176502 is a good approximation (1 mark).
14. For $x \leq 0$ we have $f(x)=(x+1)^{3}$, which has a zero at $x=-1$. We have $f(0)=1$.
The derivative is $f^{\prime}(x)=3(x+1)^{2}$, so $f(x)$ is increasing for $x \leq 0$ and there is a stationary point at $x=-1$ where $f(x)=0$. Since $f^{\prime \prime}(x)=6(x+1)$ is also zero at $x=-1$, we have to check the third derivative. It is $f^{\prime \prime \prime}(x)=$ $6 \neq 0$ so there is a point of inflection at $x=-1$. The gradient of $(x+1)^{3}$ at $x=0$ is 3 .

For $x>0$ we have $f(x)=1 /(1-x)$, which has no zeros, tends to 1 as $x \rightarrow 0$, and tends to 0 as $x \rightarrow \infty$. We have $f^{\prime}(x)=1 /(1-x)^{2}$, so there are no stationary points, and $f(x)$ is increasing in $(0,1) \cup(1, \infty)$. The gradient is 1 at $x=0$. There is a vertical asymptote at $x=1$.
The graph of $f(x)$ is therefore

(12 marks).
$f(x)$ is not continuous at $x=1$, since 1 is not in its maximal domain. (1 mark).
$f(x)$ is not differentiable at $x=1$ (not in maximal domain), nor at $x=0$ (no well-defined tangent to the graph at this point). (2 marks).
15. By de Moivre's theorem

$$
\begin{aligned}
\cos 3 \theta & =\operatorname{Re}(\cos \theta+j \sin \theta)^{3} \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{3} \theta-3 \cos \theta \quad(5 \text { marks }) .
\end{aligned}
$$

So $a=4$ and $b=-3$. Similarly

$$
\begin{aligned}
\sin 3 \theta & =\operatorname{Im}(\cos \theta+j \sin \theta)^{3} \\
& =3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \\
& =3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta \quad(5 \text { marks }) .
\end{aligned}
$$

So $c=-4$ and $d=3$.
Substituting $\theta=\pi / 6$ we obtain

$$
\begin{aligned}
\cos 3 \theta & =\cos (\pi / 2)=0 \\
4 \cos ^{3} \theta-3 \cos \theta & =4(\cos (\pi / 6))^{3}-3 \cos (\pi / 6) \\
& =4(\sqrt{3} / 2)^{3}-3 \sqrt{3} / 2 \\
& =\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2}=0 \quad(3 \text { marks }),
\end{aligned}
$$

and

$$
\begin{aligned}
\sin 3 \theta & =\sin (\pi / 2)=1 \\
3 \sin \theta-4 \sin ^{3} \theta & =3 \sin (\pi / 6)-4(\sin (\pi / 6))^{3} \\
& =\frac{3}{2}-\frac{4}{2^{3}} \\
& =1 \quad(2 \text { marks }) .
\end{aligned}
$$

