1. The maximal domain is \mathbf{R} and the range is $(-1, \infty)$ (1 mark each).

The graph is shown below (1 mark). It crosses the x and y-axes at $x=y=0$ (1 mark).

2. We have $f(0)=1, f^{\prime}(x)=-\frac{3}{2}(1+3 x)^{-3 / 2}$, so $f^{\prime}(0)=-3 / 2$, and $f^{\prime \prime}(x)=$ $\frac{27}{4}(1+3 x)^{-5 / 2}$, so $f^{\prime \prime}(0)=27 / 4$. (1 mark each for $f(0), f^{\prime}(0)$, and $\left.f^{\prime \prime}(0)\right)$. Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=1-3 x / 2+27 x^{2} / 8+\cdots .
$$

(1 mark for correct coefficients carried forward from $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$. 1 mark for not saying $\left.f(x)=1-3 x / 2+27 x^{2} / 8\right)$.
3. (a) $r=\sqrt{1+1}=\sqrt{2}$ (1 mark). $\tan \theta=-1 / 1=-1$, so since $x>0$ we have $\theta=\tan ^{-1}(-1)=-\pi / 4$ (3 marks).
(b) $x=4 \cos (-\pi / 6)=4(\sqrt{3} / 2)=2 \sqrt{3}$ and $y=4 \sin (-\pi / 6)=4(-1 / 2)=$ -2. (1 mark each)

Subtract one mark for each answer not given exactly.
4.

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x^{2}}+\cos x d x & =\left[-\frac{1}{x}+\sin x\right]_{1}^{2} \quad(3 \text { marks }) \\
& =\left(-\frac{1}{2}+\sin (2)\right)-(-1+\sin (1)) \\
& =0.568 \quad(2 \text { marks })
\end{aligned}
$$

to three decimal places.
5. Differentiating the equation with respect to x gives

$$
2 x+4 y+4 x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \quad(3 \text { marks }) .
$$

Hence

$$
\frac{d y}{d x}=-\frac{2 x+4 y}{4 x+2 y} \quad(2 \text { marks }) .
$$

Thus $\frac{d y}{d x}$ is equal to -1 when $(x, y)=(1,1)$. (1 mark).
The equation of the tangent at this point is therefore

$$
\begin{equation*}
y=-(x-1)+1=2-x \tag{2marks}
\end{equation*}
$$

6. (a) By the product rule,

$$
\frac{d}{d x}(1+x) e^{2 x}=e^{2 x}+2(1+x) e^{2 x}=(3+2 x) e^{2 x} . \quad(2 \text { marks })
$$

(b) By the chain rule,

$$
\begin{equation*}
\frac{d}{d x}\left(x^{2}+2 x+5\right)^{7}=7\left(x^{2}+2 x+5\right)^{6}(2 x+2)=14(x+1)\left(x^{2}+2 x+5\right)^{6} \tag{2marks}
\end{equation*}
$$

(c) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{\cos x}{1+x^{4}}\right)=\frac{-\left(1+x^{4}\right) \sin x-4 x^{3} \cos x}{\left(1+x^{4}\right)^{2}} . \quad(2 \text { marks })
$$

7. Stationary points are given by solutions of $f^{\prime}(x)=0$, i.e. when

$$
f^{\prime}(x)=-\frac{1}{x^{2}}+2 x=0 \quad \text { or } \quad x^{3}=\frac{1}{2}
$$

so there is only one stationary point, namely $x=2^{-1 / 3}$. (3 marks, 1 for the derivative and 2 for the solution.)
To determine its nature, $f^{\prime \prime}(x)=2 / x^{3}+2$ so $f^{\prime \prime}\left(2^{-1 / 3}\right)>0$, and the stationary point is a local minimum. (2 marks, 1 for the second derivative and one for classifying the stationary point).
8.

$$
\begin{aligned}
z_{1}+z_{2} & =5-j \quad(1 \text { mark }) \\
z_{1}-z_{2} & =3+3 j \quad(1 \text { mark }) \\
z_{1} z_{2} & =(4+j)(1-2 j)=4-8 j+j-2 j^{2}=6-7 j \\
z_{1} / z_{2} & =\frac{4+j}{1-2 j}=\frac{(4+j)(1+2 j)}{(1-2 j)(1+2 j)}=\frac{2+9 j}{5} \quad(2 \text { marks }) .
\end{aligned}
$$

9. $\sin ^{-1}(\sqrt{3} / 2)=\pi / 3$ (1 mark). The general solution of $\sin \theta=\sqrt{3} / 2$ is

$$
\theta=(-1)^{n} \pi / 3+n \pi \quad(n \in \mathbf{Z}) \quad(3 \text { marks })
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =2 \mathbf{i}+3 \mathbf{k} \quad(1 \text { mark }) \\
\mathbf{a}-\mathbf{b} & =2 \mathbf{j}+3 \mathbf{k} \quad(1 \text { mark }) \\
|\mathbf{a}| & =\sqrt{1^{2}+1^{2}+3^{2}}=\sqrt{11} \quad(1 \text { mark }) \\
|\mathbf{b}| & =\sqrt{1^{2}+1^{2}}=\sqrt{2} \quad(1 \text { mark }) \\
\mathbf{a} \cdot \mathbf{b} & =1-1+0=0 \quad(1 \text { mark })
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$ (1 mark).
11. The Maclaurin series expansion of $\cosh x$ is

$$
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \quad(2 \text { marks })
$$

Hence
(a)

$$
\begin{equation*}
x \cosh x=x+\frac{x^{3}}{2!}+\cdots \tag{2marks}
\end{equation*}
$$

(b)

$$
\cosh (2 x)=1+2 x^{2}+\frac{2 x^{4}}{3}+\cdots \quad(2 \text { marks })
$$

(c)

$$
\cosh \left(x^{2}\right)=1+\frac{x^{4}}{2}+\cdots \quad(2 \text { marks })
$$

(d)

$$
\begin{equation*}
(\cosh x)^{2}=\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)^{2}=1+x^{2}+\frac{x^{4}}{3}+\cdots \tag{4marks}
\end{equation*}
$$

We have

$$
\cosh (0.1)=1+\frac{0.01}{2}+\frac{0.0001}{24}+\cdots=1.005004
$$

to 6 decimal places. (3 marks)
12. The radius of the convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|,
$$

provided this limit exists. In this case $a_{n}=(-1)^{n} /\left(n 5^{n}\right)$, so

$$
\left|a_{n} / a_{n+1}\right|=\frac{(n+1) 5^{n+1}}{n 5^{n}}=5 \frac{n+1}{n},
$$

which tends to 5 as $n \rightarrow \infty$. Hence $R=5$. (8 marks).
When $x=5$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$. (3 marks)
When $x=-5$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n}
$$

which diverges (standard result). (3 marks).
Hence the series converges if and only if $-5<x \leq 5$. (1 mark).
13. The graphs are as shown:

(6 marks).
Between 0 and 1 the function $1-x^{2}$ decreases monotonically from 1 to 0 whereas $\sin x$ increases monotonically from 0 to $\sin 1>0$. Hence they must cross once in this range. For $x \in(1, \pi)$ there are no roots because $\sin x>0$ and $1-x^{2}<0$. For $x \in[\pi, \infty)$ there are no roots because $\sin x \geq-1$ and $1-x^{2}<-8$. (3 marks).

We have $f^{\prime}(x)=-2 x-\cos x$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}+\frac{1-x_{n}^{2}-\sin x_{n}}{2 x_{n}+\cos x_{n}} \quad(3 \text { marks }) .
$$

Hence with $x_{0}=0.7$

$$
\begin{aligned}
& x_{1}=0.638001 . \\
& x_{2}=0.636733 . \\
& x_{3}=0.636733 .
\end{aligned}
$$

(1 mark each).
14. For $x<0$ we have $f(x)=x^{2}+3 x-1$, which has zeros at

$$
x=\frac{-3 \pm \sqrt{13}}{2}
$$

of which $-(3+\sqrt{13}) / 2$ lies in the range of definition. As $x \rightarrow 0$ we see $f(x) \rightarrow-1$.
The derivative is $f^{\prime}(x)=2 x+3$, so there is a stationary point at $x=-3 / 2$. Since $f^{\prime \prime}(x)=2$, the stationary point is a local minimum. $f(x)=-13 / 4$ at the stationary point. The gradient of $x^{2}+3 x-1$ at $x=0$ is 3 .
For $x \geq 0$ we have $f(x)=2 /(x-2)$, which has no zeros and is equal to -1 at $x=0$, and tends to 0 as $x \rightarrow \infty \cdot f^{\prime}(x)=-2 /(x-2)^{2}$, so there are no stationary points, and $f(x)$ is decreasing in $(0,2) \cup(2, \infty)$. The gradient is $-1 / 2$ at $x=0$. There is a vertical asymptote at $x=2$.
The graph of $f(x)$ is therefore

(12 marks).
$f(x)$ is not continuous at $x=2$, since 2 is not in its maximal domain. (1 mark).
$f(x)$ is not differentiable at $x=2$ (not in maximal domain), nor at $x=0$ (no well-defined tangent to the graph at this point). (2 marks).
15. Let $z=\cos \theta+j \sin \theta$, so by de Moivre's theorem

$$
\begin{aligned}
z^{n} & =\cos n \theta+j \sin n \theta \\
z^{-n} & =\cos n \theta-j \sin n \theta
\end{aligned}
$$

Thus $z^{n}+z^{-n}=2 \cos n \theta$. (4 marks)
In particular, $2 \cos \theta=z+z^{-1}$ so

$$
\begin{aligned}
8 \cos ^{3} \theta & =\left(z+z^{-1}\right)^{3} \\
& =z^{3}+3 z+3 z^{-1}+z^{-3} \\
& =\left(z^{3}+z^{-3}\right)+3\left(z+z^{-1}\right) \\
& =2 \cos 3 \theta+6 \cos \theta
\end{aligned}
$$

Thus,

$$
4 \cos ^{3} \theta=\cos 3 \theta+3 \cos \theta
$$

so $a=1, b=3$ and $c=0$. (5 marks)
So

$$
\begin{aligned}
\int_{0}^{\pi / 4} \cos ^{3} x d x & =\frac{1}{4} \int_{0}^{\pi}(\cos (3 x)+3 \cos (x)) d x \\
& =\frac{1}{4}\left[\frac{\sin (3 x)}{3}+3 \sin x\right]_{0}^{\pi / 4} \\
& =\frac{1}{4}\left(\frac{\sin (3 \pi / 4)}{3}+3 \sin (\pi / 4)\right) \\
& =\frac{1}{4}\left(\frac{\sqrt{2}}{6}+\frac{3 \sqrt{2}}{2}\right)=\frac{5 \sqrt{2}}{12}
\end{aligned}
$$

(6 marks)

