Solutions to MATH105 exam September 2011 Section A

3 marks 3 marks Standard home- work exercises	1.a) For a real number x , $x^2 + 2x - 3 = 0$ if and only if $x = 1$ or $x = -3$. This is true because $x^2 + 2x - 3 = (x - 1)(x + 3) = 0 \Leftrightarrow x - 1 = 0$ or $x + 3 = 0$. b) For a real number x , if x is greater than 2, then x is greater than 1 and less than 3. This is clearly false. For example if $x = 4$ then $4 > 2$ but it is not true that $4 < 3$.
6 marks in total 1 mark 3 marks Standard home-	2a) $\exists x \in \mathbb{R}, x \notin \mathbb{Q}.$ b) $\exists x \in \mathbb{R}, x < 3 \land x^2 \ge 9.$
work exercises 4 marks in total 1 mark	3a) No, $2 \notin [0, 2)$.
1 mark 1 mark 1 mark	b) No $3 \notin X$ because $3^2 > 5$. c) No $1 \notin X$.
1 mark 1 mark	d) Yes e) No because $1 - 2i$ is not a real number
1 mark 1 mark Standard home- work exercises: no reasoning required. 6 marks in total	f) No because $\sqrt{3}$ is not rational.
1 mark	4a) $1 < 3x - 5 \Leftrightarrow 6 < 3x \Leftrightarrow 2 < x$.
2 marks	4a) $1 < 3x - 5 \Leftrightarrow 6 < 3x \Leftrightarrow 2 < x$. b) If $1 + x > 0$ then $-1 < \frac{2 - x}{1 + x} < 1 \Leftrightarrow \frac{2 - x}{1 + x} < 1 \Leftrightarrow -1 - x < 2 - x < 1 + x \Leftrightarrow -1 < 2 < 1 + 2x \Leftrightarrow \frac{1}{2} < x$, which is compatible with $x > -1$.
2 marks	If $1 + x < 0$ then $-1 < \frac{2-x}{1+x} < 1 \leftrightarrow -1 - x > 2 - x >> 1 + x \Rightarrow$ -1 > 1, which is never true. So altogether we have $-1 < \leftrightarrow \frac{1+x}{1-x} < 1 \Leftrightarrow \frac{1}{2} < x$. It is permissible
Standard home- work exercises. 5 marks in total	to do this question by sketching the graph.

3 marks 3 marks Standard home- work exercise 6 marks in total	8a) One conditional definition is $\{x \in \mathbb{R} : -1 \le x \le 1\}$ b) One constructive definition of this set is $\{2 \sin x : x \in \mathbb{R}\}$
1 mark	9a) This is neither increasing nor decreasing, because $x_1 = -1$, $x_2 = 2$ and $x_3 = -3$.
3 marks	b) $n^2 - 8n + 15 = (n-3)(n-5)$. So $x_1 = 8$, $x_2 = 3$ $x_3 = 0$, $x_4 = -1$ and $x_5 = 0$. So this sequence is neither increasing or decreasing.
2 marks	c) Since $\frac{1}{n^2}$ is decreasing with n , we see that x_n is an increasing sequence.
Standard home- work exercise 6 marks in total	

Section B		
Theory from lec- tures 4 marks	10. \sim is reflexive if $x \sim x \forall x \in X$ \sim is symmetric if	
	$x \sim y \implies y \sim x \; \forall \; x, \; y \in X.$ ~ is Transitive if	
	$(x \sim y \land y \sim z) \implies x \sim z \ \forall \ x, \ y \in X.$	
Standard home- work exercise 4 marks	a) ~ is reflexive because $3 x - x = 0$ for all $x \in \mathbb{Z}$. It is symmetric because if $x - y = 3m$ for some $m \in \mathbb{Z}$ then $y - x = 3(-m)$. It is also transitive because if $x - y = 3m$ and $y - z = 3p$ for m and $p \in \mathbb{Z}$ then $x - z = 3(m + p)$ where $m + p \in \mathbb{Z}$. So ~ is an equivalence	
Standard home- work exercise 2 marks	relation b) If $x = 1$ then $x \in \mathbb{Z}$ and $xx = x^2 = 1$ is not even. So \sim is not refelexive and hence not an equivalence relation.	
Standard home- work exercise 1 mark	c) If $x = \frac{1}{2}$ then $x \in \mathbb{Q}$ and $xx = x^2 = \frac{1}{4} \notin \mathbb{Z}$. So once again \sim is not reflexive and not an equivalence relation.	
Unseen 4 marks	d) If $z \in \mathbb{C}$ then $z - z = 0 = 0 + 0i$. So \sim is reflexive. If $z - w = m + ni$ for $m, n \in \mathbb{Z}$ then $w - z = -m + (-n)i$ and $-m$, $-n \in \mathbb{Z}$ So \sim is symmetric. If $z - w = m_1 + n_1i$ and $w - v = p + qi$, where $m, n, p, q \in \mathbb{Z}$, then z - v = (z - w) + (w - v) = m + ni + p + qi = (m + p) + (q + n)i and $m + p, n + q \in \mathbb{Z}$. So \sim is transitive and \sim is an equivalence relation.	
15 marks in total		

 $12(i) |A \cup C \cup S| = |A| + |C| + |S| - |A \cap C| - |A \cap S| - |C \cap S| + |A \cap C \cap S|.$ Theory from lectures 3 marks Similar to home-(ii) $A = (A \cap C) \cup (A \cap S)$ and $(A \cap C) \cap (A \cap S) = A \cap C \cap S$ work exercises Therefore, by the inclusion-exclusion principle for two sets, 3 marks $|A| = |A \cap C| + |A \cap S| - |A \cap C \cap S|$ (iii) From (i) we obtain Unseen but similar to homework $30 = 24 + 26 + 26 - |A \cap C| - |A \cap S| - |C \cap S| + 17$ exercises 4 marks or $63 = |A \cap C| + |A \cap S| + |C \cap S|$ (1)From (ii) we obtain $24 = |A \cap C| + |A \cap S| - 17$ or $41 = |A \cap C| + |A \cap S|$ (2)Subtracting (2) from (1) we obtain that the number of people who both cance and sail is $|C \cap S| = 63 - 41 = 22$. Unseen but similar to homework exercises 5 marks (iv) $|S| = 1 + |S \cap (A \cup C)| = 1 + |S \cap A| + |S \cap C| - |S \cap A \cap C|$ So $26 = 1 + |S \cap A| + 22 - 17$ and $|S \cap A| = 20$. Then from (2) we obtain that $|A \cap |C| = 21$ А solution obtained bv drawing a Venn diagram and writing down simultaneous equations to be solved is acceptable. 15 marks in total

Theory from lec- | 13(i) A set $A \subset Q$ is a *Dedekind cut* if tures • A is nonempty, and bounded above, 6 marks • $x \in A \land y < x \Rightarrow y \in A$ • A does not have a maximal element. Similar to homework exercises medskip (ii)a) $\{x \in \mathbb{Q} : x > 1\}$ is not bounded above, so not a Dedekind cut 1 mark 2 marks (ii)b)2 is a maximal element of $\{x \in \mathbb{Q} : x \leq 2\}$ and so A is not a Dedekind cut Similar to practice exam 6 marks (iii) A is bounded above by 1, which is not in A, because $x^2 + x - 1 =$ $(x + \frac{1}{2})^2 - \frac{5}{4}$ is strictly increasing for $x \ge -\frac{1}{2}$, and $1^2 + 1 - 1 > 0$. If $a \in A$ and b < a then if b < 0 we have $b \in A$. If $0 \le b < a$ then since $x^2 + x - 1$ is strictly increasing on $[0, \infty)$, we have $b^2 + b - 1 < b^2$ $a^2 + a - 1 < 0$ and $b \in A$. If 0 < a, $\varepsilon < 1$ then $(a+\varepsilon)^2 + a + \varepsilon - 1 = a^2 + a - 1 + 2a\varepsilon + \varepsilon^2 + \varepsilon < a^2 + a - 1 + 2\varepsilon + \varepsilon + \varepsilon$ $< a^2 + a - 1 + 4\varepsilon$ $\text{If } \varepsilon < -\frac{a^2+a-1}{4} \text{ then } a^2+a-1+4\varepsilon < 0 \text{ and, if } \varepsilon \in \mathbb{Q}, \, a+\varepsilon \in A.$ So a is not maximal, for any $a \in A$, and A is a Dedekind cut. 15 marks in total