Solutions to MATH105 exam September 2011

Section A

3 marks

3 marks

Standard homework exercises 6 marks in total

1 mark
3 marks
Standard homework exercises 4 marks in total

1 mark
1 mark
1 mark
1 mark
1 mark
1 mark
Standard home-
work exercises:
no reasoning
required.
6 marks in total

1 mark
2 marks

2 marks

Standard homework exercises. 5 marks in total
1.a) For a real number $x, x^{2}+2 x-3=0$ if and only if $x=1$ or $x=-3$.
This is true because $x^{2}+2 x-3=(x-1)(x+3)=0 \Leftrightarrow x-1=0$ or $x+3=0$.
b) For a real number x, if x is greater than 2 , then x is greater than 1 and less than 3.
This is clearly false. For example if $x=4$ then $4>2$ but it is not true that $4<3$.

2a) $\exists x \in \mathbb{R}, x \notin \mathbb{Q}$.
b) $\exists x \in \mathbb{R}, x<3 \wedge x^{2} \geq 9$.

3a) No, $2 \notin[0,2)$.
b) No $3 \notin X$ because $3^{2}>5$.
c) No $1 \notin X$.
d) Yes
e) No because $1-2 i$ is not a real number
f) No because $\sqrt{3}$ is not rational.

4a) $1<3 x-5 \Leftrightarrow 6<3 x \Leftrightarrow 2<x$.
b) If $1+x>0$ then $-1<\frac{2-x}{1+x}<1 \leftrightarrow \frac{2-x}{1+x}<1 \Leftrightarrow-1-x<$ $2-x<1+x \Leftrightarrow-1<2<1+2 x \Leftrightarrow \frac{1}{2}<x$, which is compatible with $x>-1$.
If $1+x<0$ then $-1<\frac{2-x}{1+x}<1 \leftrightarrow-1-x>2-x \gg 1+x \Rightarrow$ $-1>1$, which is never true.
So altogether we have $-1<\leftrightarrow \frac{1+x}{1-x}<1 \Leftrightarrow \frac{1}{2}<x$. It is permissible to do this question by sketching the graph.

1 marks

5 marks

Standard homework exercise 6 marks in total

4 marks

1 mark
1 mark
1 mark
2 marks
Standard homework exercise 9 marks in total

3 marks

4 marks

Standard homework exercise 7 marks in total
5. To start the induction, $2^{4}=16<24=4$!. So $2^{n}<n$! is true for $n=4$.
Now suppose inductively that $n \geq 4$ and $2^{n}<n$!. Then

$$
2^{n+1}=2 \cdot 2^{n}<2 \cdot n!<(n+1) \cdot n!=(n+1)!
$$

So true for n implies true for $n+1$ and $2^{n}<n!$ is true for all $n \geq 4$.
6. Performing integral row operations to implement Euclid's algorithm:

$$
\begin{aligned}
& \left.\begin{array}{ll|lcc|cccc|c}
1 & 0 & 168 & & & 1 & 0 & 168 & R_{1}-2 R_{2} & 5 \\
0 & -2 & 24 \\
0 & 1 & 408 & \rightarrow & -2 & 1 & 72 & \rightarrow & -2 & 1
\end{array} \right\rvert\, 72 \\
& \begin{array}{ccc|c}
& 5 & -2 & 124 \\
R_{2}-3 R_{1} & -17 & 7 & 0
\end{array}
\end{aligned}
$$

As a result of this:
(i) the g.c.d. d is 24 ;
(ii) from the last row of the last matrix, $r=7$ and $s=17$;
(iii) from the first row of either of the last two matrices $m=5$ and $n=-2$;
(iv) The l.c.m is $408 \times 7=2856$.

7a) $f((-1, \infty))=(-1, \infty)$ because the cube root of x exists for all $x \in \mathbb{R}, f$ is increasing, $f(-1)=-1$ and $f(x) \rightarrow+\infty$ as $x \rightarrow$ $+\infty$. So the image of f is $(-1,, \infty)$ and f is surjective. Also, f is injective, because f is strictly increasing, and any strictly increasing function is injective.
b) $f(x)=y \Leftrightarrow y=\frac{x+1}{x-1} \Leftrightarrow x y-y=x+1 \Leftrightarrow x(y-1)=y+1 \Leftrightarrow$ $x=\frac{y+1}{y-1}$. Now $\frac{y+1}{y-1}$ is defined for $y \in \mathbb{R} \Leftrightarrow y \neq 1$. So the image of f is $(-\infty, 1) \cup(1, \infty) \neq \mathbb{R}$ and f is not surjective. However, f is injective, because, for any $y \neq 1$, the only value of x for which $f(x)=y$ is $x=\frac{y+1}{y-1}$.

3 marks
3 marks
Standard homework exercise
6 marks in total

1 mark

3 marks

2 marks

Standard homework exercise 6 marks in total

8a) One conditional definition is $\{x \in \mathbb{R}:-1 \leq x \leq 1\}$
b) One constructive definition of this set is $\{2 \sin x: x \in \mathbb{R}\}$

9a) This is neither increasing nor decreasing, because $x_{1}=-1$, $x_{2}=2$ and $x_{3}=-3$.
b) $n^{2}-8 n+15=(n-3)(n-5)$. So $x_{1}=8, x_{2}=3 x_{3}=0, x_{4}=-1$ and $x_{5}=0$. So this sequence is neither increasing or decreasing.
c) Since $\frac{1}{n^{2}}$ is decreasing with n, we see that x_{n} is an increasing
sequence.

Section B

Theory from lectures 4 marks

Standard homework exercise 4 marks

Standard homework exercise 2 marks

Standard homework exercise 1 mark
Unseen 4 marks

15 marks in total
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

~ is Transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y \in X
$$

a) \sim is reflexive because $3 \mid x-x=0$ for all $x \in \mathbb{Z}$. It is symmetric because if $x-y=3 m$ for some $m \in \mathbb{Z}$ then $y-x=3(-m)$. It is also transitive because if $x-y=3 m$ and $y-z=3 p$ for m and $p \in \mathbb{Z}$ then $x-z=3(m+p)$ where $m+p \in \mathbb{Z}$. So \sim is an equivalence relation
b) If $x=1$ then $x \in \mathbb{Z}$ and $x x=x^{2}=1$ is not even. So \sim is not refelexive and hence not an equivalence relation.
c) If $x=\frac{1}{2}$ then $x \in \mathbb{Q}$ and $x x=x^{2}=\frac{1}{4} \notin \mathbb{Z}$. So once again \sim is not reflexive and not an equivalence relation.
d) If $z \in \mathbb{C}$ then $z-z=0=0+0 i$. So \sim is reflexive.

If $z-w=m+n i$ for $m, n \in \mathbb{Z}$ then $w-z=-m+(-n) i$ and $-m$, $-n \in \mathbb{Z}$ So \sim is symmetric.
If $z-w=m_{1}+n_{1} i$ and $w-v=p+q i$, where $m, n, p, q \in \mathbb{Z}$, then $z-v=(z-w)+(w-v)=m+n i+p+q i=(m+p)+(q+n) i$ and $m+p, n+q \in \mathbb{Z}$. So \sim is transitive and \sim is an equivalence relation.

3 marks

2 marks
5 marks

1 mark
4 marks

Standard homework exercises 15 marks in total
11. We have $x_{0}=2$ and $x_{1}=\frac{7}{4}$. So $x_{1}^{2}-3=\frac{49}{16}-3=\frac{1}{16}$. So (i), (iii) and (iv) hold for $n=0$ and (v) holds for $n=1$.
(i) If $x_{n}>0$ then $\frac{x_{2}}{2}$ and $\frac{3}{2 x_{n}}>0$ and $x_{n+1}>0$
(ii)

$$
\begin{gathered}
x_{n+1}^{2}-3=\left(\frac{x_{n}}{2}+\frac{3}{2 x_{n}}\right)^{2}-3=\frac{x_{n}^{2}}{4}+\frac{3}{2}+\frac{9}{4 x_{n}^{2}}-3 \\
=\frac{x_{n}^{2}}{4}-\frac{3}{2}+\frac{9}{4 x_{n}^{2}}=\frac{1}{4 x_{n}^{2}}\left(x_{n}^{4}-6 x_{n}^{2}+9\right) \\
=\frac{\left(x_{n}^{2}-3\right)^{2}}{4 x_{n}^{2}}
\end{gathered}
$$

(iii) From (ii), we see that $x_{n+1}^{2}-3>0$
(iv) From (iii) for x_{n} we see that $x_{n+1}-x_{n}=-\frac{x_{n}^{2}-3}{2 x_{n}}<0$ and hence $x_{n+1}<x_{n}$. From $x_{n+1}>0$ (i) and $x_{n+1}^{2}-3>0$ (iii) we see that $x_{n+1}>1$.

Theory from lectures
3 marks
Similar to homework exercises 3 marks

Unseen but similar to homework exercises
4 marks

Unseen but similar to homework exercises

5 marks

A solution obtained by drawing a Venn diagram and writing down simultaneous equations to be solved is acceptable.
15 marks in total

12(i) $|A \cup C \cup S|=|A|+|C|+|S|-|A \cap C|-|A \cap S|-|C \cap S|+|A \cap C \cap S|$.
(ii) $A=(A \cap C) \cup(A \cap S)$ and $(A \cap C) \cap(A \cap S)=A \cap C \cap S$ Therefore, by the inclusion-exclusion principle for two sets,

$$
|A|=|A \cap C|+|A \cap S|-|A \cap C \cap S|
$$

(iii) From (i) we obtain

$$
30=24+26+26-|A \cap C|-|A \cap S|-|C \cap S|+17
$$

or

$$
\begin{equation*}
63=|A \cap C|+|A \cap S|+|C \cap S| \tag{1}
\end{equation*}
$$

From (ii) we obtain

$$
24=|A \cap C|+|A \cap S|-17
$$

or

$$
\begin{equation*}
41=|A \cap C|+|A \cap S| \tag{2}
\end{equation*}
$$

Subtracting (2) from (1) we obtain that the number of people who both canoe and sail is $|C \cap S|=63-41=22$.
(iv)

$$
|S|=1+|S \cap(A \cup C)|=1+|S \cap A|+|S \cap C|-|S \cap A \cap C|
$$

So

$$
26=1+|S \cap A|+22-17
$$

and $|S \cap A|=20$. Then from (2) we obtain that $|A \cap| C \mid=21$

Theory from lectures 6 marks

13(i) A set $A \subset Q$ is a Dedekind cut if

- A is nonempty, and bounded above,
- $x \in A \wedge y<x \Rightarrow y \in A$
- A does not have a maximal element.

Similar to homework exercises

1 mark
2 marks
Similar to practice exam

6 marks
medskip
(ii)a) $\{x \in \mathbb{Q}: x>1\}$ is not bounded above, so not a Dedekind cut Dedekind cut
(ii)b) 2 is a maximal element of $\{x \in \mathbb{Q}: x \leq 2\}$ and so A is not a
(iii) A is bounded above by 1 , which is not in A, because $x^{2}+x-1=$ $\left(x+\frac{1}{2}\right)^{2}-\frac{5}{4}$ is strictly increasing for $x \geq-\frac{1}{2}$, and $1^{2}+1-1>0$.
If $a \in A$ and $b<a$ then if $b<0$ we have $b \in A$. If $0 \leq b<a$ then since $x^{2}+x-1$ is strictly increasing on $[0, \infty)$, we have $b^{2}+b-1<$ $a^{2}+a-1<0$ and $b \in A$.
If $0<a, \varepsilon<1$ then
$(a+\varepsilon)^{2}+a+\varepsilon-1=a^{2}+a-1+2 a \varepsilon+\varepsilon^{2}+\varepsilon<a^{2}+a-1+2 \varepsilon+\varepsilon+\varepsilon$

$$
<a^{2}+a-1+4 \varepsilon
$$

If $\varepsilon<-\frac{a^{2}+a-1}{4}$ then $a^{2}+a-1+4 \varepsilon<0$ and, if $\varepsilon \in \mathbb{Q}, a+\varepsilon \in A$. So a is not maximal, for any $a \in A$, and A is a Dedekind cut.

