Solutions to MATH105 Practice Exam Section A

2 marks 2 marks	1a) (ii) and (iv) are logically equivalent to (i). (iii) is not, because \lor means "or". (v) is not, because $x^2 \leq 16 \Leftrightarrow x \in [-4, 4]$. b) (iii), (iv) and (v) are logically equivalent to (i). (ii) is not, but the statement $x \in A \Rightarrow x \in B$ is logically equivalent to (i).
2 marks	c)(iii) and (iv) are logically equivalent to (i). (v) is not, because, for example, (v) holds when $m = 4$ and $n = 2$ but (i) is not true for this choice of m and n , because 4 does not divide 2.
6 marks in total	
3 marks	2a) For a real number x, if $x < 5$ then $x^2 < 25$. This is false, because $-6 < 5$ but $(-6)^2 = 36 > 25$.
3 marks	b) For a real number x , if x is greater than 0 or less than -1 , then x is greater than 0.
	This is clearly false because if $x < -1$ then it is true that " $x < -1$ or $x > 0$ ". But it is not true that $x > 0$.
6 marks in total	
1 mark 3 marks	3a) $x \le 1 \lor x \ge 2$. b) $\exists x \in \mathbb{R}, x^2 \le -2$. [Of course, this is false, but that was not
	what was asked.]
4 marks in total	
1 mark	4a) $2 + 3x < -1 \Leftrightarrow 3x < -3 \Leftrightarrow x < -1$.
2 marks	b) If $3 - x > 0$ then $1 \iff \frac{2 + x}{3 - x} < 2 \Leftrightarrow 3 - x < 2 + x < 6 - 2x \Leftrightarrow$
	$(1 < 2x \land 3x < 4 \Leftrightarrow \frac{1}{2} < x < \frac{4}{3}$, which is compatible with $3 - x > 0$.
2 marks	If $3 - x < 0$ then $1 \iff \frac{2 + x}{3 - x} < 2 \Leftrightarrow 3 - x > 2 + x > 6 - 2x \Leftrightarrow$
	$1 > 2x \land 3x > 4 \Leftrightarrow \frac{1}{2} > x \land x > \frac{4}{3}$. This is never true.
	So altogether we have $1 \iff \frac{2+x}{3-x} < 2 \Leftrightarrow \frac{1}{2} < x < \frac{4}{3}$
5 marks in total	

1 marks 5. To start the induction, $5^2 + 1 = 26 < 32 = 2^5$. So $n^2 + 1 < 2^n$ is true for $n = 5$. Now suppose inductively that $n \ge 5$ and $n^2 + 1 < 2^n$. Then 5 marks $(n+1)^2 + 1 = n^2 + 2n + 2 < 2n^2 + 2 < 2 \cdot 2^n = 2^{n+1}$ So true for n implies true for $n + 1$ and $n + 1 < 2^n$ is true for all $n \ge 5$. 6 marks in total 6. 1 $0 330$ $R_1 - R_2$ 0 $1 225$ 0 $R_1 - 7R_2$ $R_2 - 2R_1$ $R_1 - 7R_2$ $R_1 - 7R_2$ $R_2 - 2R_1$ $R_1 - 7R_2$ $R_1 - 7R_2$ $R_2 - 2R_1$ $R_1 - 1 1 1 10 10 10 10 10 10 10 10 10 10 10 1$
5 marks Now suppose inductively that $n \ge 5$ and $n^2 + 1 < 2^n$. Then 5 marks $(n+1)^2 + 1 = n^2 + 2n + 2 < 2n^2 + 2 < 2 \cdot 2^n = 2^{n+1}$ So true for n implies true for $n+1$ and $n+1 < 2^n$ is true for all $n \ge 5$. 6 marks in total 6. $1 0 330$ $R_1 - R_2$ $0 1 225$ \rightarrow $0 1 225$ \rightarrow $R_1 - 7R_2$ $15 -22 0$ \rightarrow $-2 3 15$ 4 marks As a result of this: 1 mark (i) the g.c.d. d is 15;
$ \begin{array}{ll} 5 \text{ marks} & (n+1)^2 + 1 = n^2 + 2n + 2 < 2n^2 + 2 < 2 \cdot 2^n = 2^{n+1} \\ \text{So true for } n \text{ implies true for } n+1 \text{ and } n+1 < 2^n \text{ is true for all } \\ n \geq 5. \end{array} $ $ \begin{array}{ll} 6 \text{ marks in total} & \\ 6. & \\ 1 & 0 \frac{330}{0 & 1} 225 & \stackrel{1}{\rightarrow} & 1 & -1 \frac{105}{225} & \stackrel{1}{\rightarrow} & \frac{1}{-2} & -1 \frac{105}{15} \\ & 0 & 1 225 & \stackrel{1}{\rightarrow} & 0 & 1 225 & \stackrel{2}{R_2 - 2R_1} & \stackrel{1}{-2} & 3 \frac{115}{15} \\ & & R_1 - 7R_2 & 15 & -22 \\ & & -2 & 3 & 15 \end{array} $ $ \begin{array}{l} 4 \text{ marks} \\ 1 \text{ mark} & \\ 1 \text{ mark} & \\ \end{array} $
$(n+1) + 1 = n + 2n + 2 < 2n + 2 < 2 - 2 = 2^{-1}$ So true for <i>n</i> implies true for $n + 1$ and $n + 1 < 2^n$ is true for all $n \ge 5$. 6 marks in total 6. 1 0 330 $R_1 - R_2$ 1 -1 105 \rightarrow 1 -1 105 0 1 225 \rightarrow 0 1 225 $R_2 - 2R_1$ -2 3 15 $R_1 - 7R_2$ 15 -22 0 \rightarrow -2 3 15 4 marks 1 mark As a result of this: (i) the g.c.d. <i>d</i> is 15;
$ \begin{array}{c c} n \geq 5. \\ \hline 6 \text{ marks in total} \\ \hline 6. \\ 1 & 0 \begin{array}{c} 330 \\ 0 & 1 225 \end{array} \xrightarrow{R_1 - R_2} 1 & -1 \begin{array}{c} 105 \\ -1 & -1 \begin{array}{c} 105 \\ 225 \end{array} \xrightarrow{\rightarrow} 0 & 1 \begin{array}{c} 225 \end{array} \xrightarrow{\rightarrow} 1 & -1 \begin{array}{c} 105 \\ -2 & 3 & 15 \end{array} \\ \hline R_1 - 7R_2 \\ -2 & 3 & 15 \end{array} \\ \hline R_1 - 7R_2 \\ -2 & 3 & 15 \end{array} \\ \hline 4 \text{ marks} \\ \hline 4 \text{ marks} \\ 1 \text{ mark} \\ \hline 1 \text{ mark} \\ \end{array} $
$ \begin{array}{c c} n \geq 5. \\ \hline 6 \text{ marks in total} \\ \hline 6. \\ 1 & 0 \begin{array}{c} 330 \\ 0 & 1 225 \end{array} \xrightarrow{R_1 - R_2} 1 & -1 \begin{array}{c} 105 \\ -1 & -1 \begin{array}{c} 105 \\ 225 \end{array} \xrightarrow{\rightarrow} 0 & 1 \begin{array}{c} 225 \end{array} \xrightarrow{\rightarrow} 1 & -1 \begin{array}{c} 105 \\ -2 & 3 & 15 \end{array} \\ \hline R_1 - 7R_2 \\ -2 & 3 & 15 \end{array} \\ \hline R_1 - 7R_2 \\ -2 & 3 & 15 \end{array} \\ \hline 4 \text{ marks} \\ \hline 4 \text{ marks} \\ 1 \text{ mark} \\ \hline 1 \text{ mark} \\ \end{array} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} R_1 - 7R_2 & 15 & -22 & 0 \\ \rightarrow & -2 & 3 & 15 \end{array}$ 4 marks 4 marks 1 mark (i) the g.c.d. d is 15;
$\begin{array}{cccc} R_1 - 7R_2 & 15 & -22 & 0 \\ \rightarrow & -2 & 3 & 15 \end{array}$ 4 marks 4 marks 1 mark (i) the g.c.d. d is 15;
$\begin{array}{cccc} R_1 - 7R_2 & 15 & -22 & 0 \\ \rightarrow & -2 & 3 & 15 \end{array}$ 4 marks 4 marks 1 mark (i) the g.c.d. d is 15;
4 marks As a result of this: 1 mark (i) the g.c.d. d is 15;
4 marks As a result of this: 1 mark (i) the g.c.d. d is 15;
4 marks As a result of this: 1 mark (i) the g.c.d. d is 15;
$\begin{array}{l} \text{As a result of this:} \\ 1 \text{ mark} \\ \end{array} (i) \text{ the g.c.d. } d \text{ is } 15; \end{array}$
$\begin{array}{l} \text{As a result of this:} \\ 1 \text{ mark} \\ \end{array} (i) \text{ the g.c.d. } d \text{ is } 15; \end{array}$
1 mark (i) the g.c.d. d is 15;
1 mark (ii) from the first row of the last matrix, $r = 22$ and $s = 15$;
1 mark (iii) from the second row of either of the last two matrices, $m = -2$
and $n = 3$; 2 marks (iv) The lcm is $330 \times 15 = 4950$.
2 marks $(1V)$ The ICII IS $550 \times 15 = 4950$.
9 marks in total
3 marks 7a) $f(\mathbb{R}) = \mathbb{R}$ because if x is the real cube root of $y - 1$ then
$x^3 + 1 = y$. So f is surjective. Also f is injective because f is
strictly increasing.
4 marks b) $f(x) = y \Leftrightarrow y = \frac{2-x}{x+1} \Leftrightarrow 2-x = xy+y \Leftrightarrow x(y+1) = 2-y \Leftrightarrow x = \frac{2-y}{y+1}$ which is, in fact, $f(y)$. Now $\frac{2-y}{y+1}$ is defined for $y \in \mathbb{R}$
x+1 2-y $x+12-y$ $x+1$
$x = \frac{y}{y+1}$ - which is, in fact, $f(y)$. Now $\frac{y}{y+1}$ is defined for $y \in \mathbb{R}$
$\Leftrightarrow y \neq -1$. So the image of f is $(-\infty, -1) \cup (-1, \infty) \neq \mathbb{R}$ and f
is not surjective. However, f is injective, because, for any $y \neq -1$,
the only value of x for which $f(x) = y$ is $x = \frac{2-y}{y+1}$.
Note that in this example, the function f is its own inverse, but
this does not always happen.
7 marks in total

7 marks in total

3 marks 3 marks	8a) Since the image of the map $f(x) = e^x + 1$ is the set $(1, \infty)$, a conditional definition of this set is $\{x \in \mathbb{R} : x > 1\}$. b) For $n \in \mathbb{Z}$ $2 n \wedge 3 n \Leftrightarrow 6 n \Leftrightarrow \exists k \in \mathbb{Z}$ such that $n = 6k$.
6 marks in total	So a constructive definition of this set is $\{6k : k \in \mathbb{Z}\}$.
1 mark	9a)This is an increasing sequence since $3(n+1)+2 = 3n+5 > 3n+2$ for all integers $n \ge 1$.
3 marks	b) $x_n = n^2 - 3n - 4 = (n+1)(n-4)$. So $n+1 > 0$ for all $n \ge 1$ and both $n+1$ and $n-4$ are increasing with n . It follows that x_n
2 marks	is increasing. c) $x_n = \frac{(-)^n}{n^2 + 1}$ is neither increasing nor decreasing, since the terms are alternatively strictly positive and strictly negative.
6 marks in total	

	10. \sim is reflexive if
4 marks	$x \sim x \forall x \in X$
	\sim is <i>symmetric</i> if
	$x \sim y \Rightarrow y \sim x \ \forall x, y \in X.$
	\sim is <i>transitive</i> if
	$(x \sim y \land y \sim z) \Rightarrow x \sim z \forall x, y, \in X.$
3 marks	a) ~ is reflexive because $x - x = 0 \in \mathbb{Z}$ for all $x \in \mathbb{Q}$. It is symmetric because if $x - y \in \mathbb{Z}$ then $y - x = -(x - y) \in \mathbb{Z}$. It is transitive because if $x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$ then $x - z = (x - y) + (y - z) \in \mathbb{Z}$. So ~ is an equivalence relation.
1 mark	b) ~ is not reflexive because, for example, if $x = \frac{1}{2} \in \mathbb{Q}$, then
	$x - 2x = -\frac{1}{2} \notin \mathbb{Z}$. So ~ is not an equivalence relation
4 marks 3 marks	c) If f is any polynomial with real coefficients, $f \sim f$ because $f - f = 0$ is a real constant. So \sim is reflexive. If f and g are any polynomials with real coefficients, $f \sim g \Leftrightarrow f - g = c \in \mathbb{R} \Leftrightarrow g - f = -c \in \mathbb{R} \Rightarrow g \sim f$. So \sim is symmetric. If f , g and h are any polynomials with real coefficients, and $f \sim g$ and $g \sim h$, then $f - g = c_1 \in \mathbb{R}$ and $g - h = c_2 \in R$ and hence $f - h = c_1 + c_2 \in \mathbb{R}$ and $f \sim h$ So \sim is transitive Hence \sim is an equivalence relation. The equivalence class of f_1 is all polynomials $x + c$, for $c \in \mathbb{R}$.
15 marks in total	polynomials of the form c , for $c \in \mathbb{R}$.

1 mark 4 marks	11a) Base Case $x_0 = 1 = 2 \cdot 3^0 - 1$, so the formula holds for $n = 0$. Inductive Step Assume that $x_n = 2 \cdot 3^n - 1$. Then, using the definition for the first equality,
	$x_{n+1} = 3x_n + 2 = 3(2 \cdot 3^n - 1) + 2 = 2 \cdot 3^{n+1} - 3 + 2 = 2 \cdot 3^{n+1} - 1.$
	So $x_n = 2 \cdot 3^n - 1 \implies x_{n+1} = 2 \cdot 3^{n+1} - 1.$
1 mark 1 mark	So by induction $x_n = 2 \cdot 3^n - 1$ holds for all $n \in \mathbb{N}$. b) Base Case If $n = 1$, any function $f : \{1\} \to \mathbb{R}$ attains its maximum at 1, because, trivially, $f(i) \leq f(1)$ for all i with $1 \leq i \leq 1$ (that is, for $i = 1$).
5 marks	Inductive Step Let $n \in \mathbb{Z}_+$, and assume that any real-valued function with domain $\{i \in \mathbb{Z}_+ : 1 \le i \le n\}$ attains a maximum value. Now let $f : \{i \in \mathbb{Z}_+ : 1 \le i \le n+1\} \to \mathbb{R}$ be any function. Then the restriction of this function to $\{i \in \mathbb{Z}_+ : 1 \le i \le n\}$ does attain its maximum, that is, there is $k_1 \in \mathbb{Z}_+$ with $1 \le k_1 \le n$ such that $f(i) \le f(k_1)$ for all $1 \le i \le n$. Now define $k = k_1$ if $f(n+1) \le f(k_1)$ and $k - n + 1$ if $f(k_1) < f(n+1)$. Then $f(i) \le f(k)$ for all $1 \le i \le n + 1$, that is, f attains its maximum. So True for $n \Rightarrow$ True for $n + 1$.
1 mark	So by induction, for any $n \in \mathbb{Z}_+$, any function $f : \{k \in \mathbb{Z}_+ : 1 \leq k \leq n\} \to \mathbb{R}$ attains its maximum.
2 marks	An example of a function $f : \mathbb{Z}_+ \to [0, 1]$ which does not attain its maximum is the function f defined by
	$f(n) = 1 - \frac{1}{n}$
	for all $n \in \mathbb{Z}_+$, because $\lim_{n\to\infty} f(n) = 1$, but $1 \neq f(k)$ for any $k \in \mathbb{Z}_+$.
15 marks in total	

3 marks	$\begin{vmatrix} 12(i) & E \cup T \cup M = E + T + M - E \cap T - T \cap M - E \cap M \\ M + E \cap T \cap M . \end{vmatrix}$
	(ii) The number of people going on at least two tours is
4 marks	$ (E \cap T) \cup (T \cap M) \cup (E \cap M) .$
	The intersection of any two of the sets $E \cap T$, $T \cap M$, $E \cap M$ is $E \cap T \cap M$. So the intersection of all three of these sets is also $E \cap T \cap M$. Applying the inclusion-exclusion principle we have
	$ (E \cap T) \cup (T \cap M) \cup (E \cap M) $
	$= E \cap T + T \cap M + E \cap M - 3 E \cap T \cap M + E \cap T \cap M $
	$= E \cap T + T \cap M + E \cap M - 2 E \cap T \cap M .$
4 marks	(iii) Adding the equations from (i) and (ii) the terms $ E\cap T + T\cap M + E\cap M $ cancel and we obtain
	$28 + 18 = 46 = 22 + 7 + 21 - E \cap M \cap T = 50 - E \cap M \cap T $
4 marks	So the number $ E \cap M \cap T $ of people going on all three tours is 4. (iv) $ E \cap (T \cup M) = 22 - 6 = 16$. Applying the inclusion-exclusion principle to the two sets $E \cap T$ and $E \cap M$ we have
	$16 = E \cap M + E \cap T - E \cap M \cap T = 16 + E \cap T - 4.$
	So the number of people going on both the London Eye and Tower of London tours is
	$ E \cap T = 16 - 12 = 4.$
15 marks in total	

C la	13(i) A set $A \subset Q$ is a <i>Dedekind cut</i> if
6 marks	• A is nonempty, and bounded above,
	• $x \in A \land y < x \Rightarrow y \in A$
	• A does not have a maximal element.
	(ii)
1 mark	(ii)a) Q is not bounded above, so not a Dedekind cut
2 marks	(ii)b) $\frac{1}{2} \in \mathbb{Q}$ but $0 \notin A$ and $0 < \frac{1}{2}$, so A is not a Dedekind cut
6 marks	(iii) A^2 is bounded above – by 3 for example because if $a \ge 3$ then $a^2 \ge 9 > 5$. and since $x \mapsto x^2$ is strictly increasing for $x \ge 0$, if $a \in A$ and $b < a$ then either $b < 0$ – in which case $b \in A$ — or $0 \le b^2 < a^2$ and so $a \in A$. Also, $2 \in A$, because $2^2 = 4 < 5$.
	Finally, A has no maximal element. For suppose $a \in A$ and $a \ge 2$. If $0 < \varepsilon < 1$ then $(a + \varepsilon)^2 = a^2 + 2a\varepsilon + \varepsilon^2 < a^2 + 3a\varepsilon$. If in addition
	$\varepsilon < \frac{5-a^2}{3a}$ then $3a\varepsilon \le 5-a^2$ and hence $(a+\varepsilon)^2 < 5$. If in addition $\varepsilon \in \mathbb{Q}$, then $a+\varepsilon \in \mathbb{Q}$ and $a+\varepsilon \in A$. So <i>a</i> is not maximal in <i>A</i> for any $a \in A$, and <i>A</i> does not have a maximal element. So <i>A</i> satisifies all the conditions of (i) and <i>A</i> is a Dadalind cut
15 marks in total	all the conditions of (i), and A is a Dedekind cut.
1 mark	14. A is <i>finite</i> if either A is empty or there is $n \in \mathbb{Z}_+$ and a bijection $f \in \{k \in \mathbb{Z}_+\}$
2 marks	$f: \{k \in \mathbb{Z}_+\} \to A.$ A is <i>countable</i> if either A is finite or there is a bijection $f: \mathbb{N} \to A$
2 marks	(or a bijection from \mathbb{Z}_+ to A) A and B has the same cardinality if there is a bijection $f : A \to B$.
2 marks	\mathbb{R} is uncountable and \mathbb{Z} and \mathbb{Q} are countable.
3 marks	Schröder-Bernstein Theorem: If A and B are two sets and there are injective maps $f: A \to B$ and $g: B \to A$ then there is a bijection $h: A \to B$.
2 marks	If f is given by $f(x,0) = e^x$ and $f(0,y) = -e^y$ for $y \neq 0$ then the set of values of $f(x,0)$ is $(0,\infty)$ and the set of values of $f(0,y)$ for $y \neq 0$ is $(-\infty, -1) \cup (-1, 0)$, because e^x is increasing and $-e^y$ is decreasing and $-e^0 = -1$. So altogether the image of f is $(-\infty, -1) \cup (-1, 0) \cup$
3 marks	$(0, \infty)$. Since f is injective restricted to $\mathbb{R} \times \{0\}$ and $\{0\} \times (\mathbb{R} \setminus \{0\})$, and the images of these two sets are disjoint, the map f is injective on X . Also $g : \mathbb{R} \to X$ defined by $g(x) = (x, 0)$ is injective. So there is a bijection $h : X \to \mathbb{R}$ by the Schröder-Bernstien Theorem.
15 marks in total	