Solutions to MATH105 Practice Exam

Section A

2 marks

2 marks

2 marks

6 marks in total

3 marks

3 marks

6 marks in total

1 mark
3 marks

4 marks in total

1 mark
2 marks

2 marks

5 marks in total

1a) (ii) and (iv) are logically equivalent to (i). (iii) is not, because \vee means "or". (v) is not, because $x^{2} \leq 16 \Leftrightarrow x \in[-4,4]$.
b) (iii), (iv) and (v) are logically equivalent to (i). (ii) is not, but the statement $x \in A \Rightarrow x \in B$ is logically equivalent to (i).
c) (iii) and (iv) are logically equivalent to (i). (v) is not, because, for example, (v) holds when $m=4$ and $n=2$ but (i) is not true for this choice of m and n, because 4 does not divide 2 .

2a) For a real number x, if $x<5$ then $x^{2}<25$.
This is false, because $-6<5$ but $(-6)^{2}=36>25$.
b) For a real number x, if x is greater than 0 or less than -1 , then x is greater than 0 .
This is clearly false because if $x<-1$ then it is true that " $x<-1$ or $x>0 "$. But it is not true that $x>0$.

3a) $x \leq 1 \vee x \geq 2$.
b) $\exists x \in \mathbb{R}, x^{2} \leq-2$. [Of course, this is false, but that was not what was asked.]

4a) $2+3 x<-1 \Leftrightarrow 3 x<-3 \Leftrightarrow x<-1$.
b) If $3-x>0$ then $1<\leftrightarrow \frac{2+x}{3-x}<2 \Leftrightarrow 3-x<2+x<6-2 x \Leftrightarrow$ $\left(1<2 x \wedge 3 x<4 \Leftrightarrow \frac{1}{2}<x<\frac{4}{3}\right.$, which is compatible with $3-x>0$. If $3-x<0$ then $1<\leftrightarrow \frac{2+x}{3-x}<2 \Leftrightarrow 3-x>2+x>6-2 x \Leftrightarrow$ $1>2 x \wedge 3 x>4 \Leftrightarrow \frac{1}{2}>x \wedge x>\frac{4}{3}$. This is never true.
So altogether we have $1<\Leftrightarrow \frac{2+x}{3-x}<2 \Leftrightarrow \frac{1}{2}<x<\frac{4}{3}$

1 marks

5 marks

6 marks in total

4 marks

1 mark
1 mark
1 mark
2 marks
9 marks in total

3 marks

4 marks
5. To start the induction, $5^{2}+1=26<32=2^{5}$. So $n^{2}+1<2^{n}$ is true for $n=5$.
Now suppose inductively that $n \geq 5$ and $n^{2}+1<2^{n}$. Then

$$
(n+1)^{2}+1=n^{2}+2 n+2<2 n^{2}+2<2 \cdot 2^{n}=2^{n+1}
$$

So true for n implies true for $n+1$ and $n+1<2^{n}$ is true for all $n \geq 5$.
6.

$$
\left.\begin{array}{cc|cccc|ccc|c}
1 & 0 & 330 & R_{1}-R_{2} & 1 & -1 & 105 & & 1 & -1 \\
0 & 1 & 225 & \rightarrow & 0 & 1 & 225 & R_{2}-2 R_{1} & -2 & 3
\end{array} \right\rvert\, 15
$$

As a result of this:
(i) the g.c.d. d is 15 ;
(ii) from the first row of the last matrix, $r=22$ and $s=15$;
(iii) from the second row of either of the last two matrices, $m=-2$ and $n=3$;
(iv) The lcm is $330 \times 15=4950$.

7a) $f(\mathbb{R})=\mathbb{R}$ because if x is the real cube root of $y-1$ then $x^{3}+1=y$. So f is surjective. Also f is injective because f is strictly increasing.
b) $f(x)=y \Leftrightarrow y=\frac{2-x}{x+1} \Leftrightarrow 2-x=x y+y \Leftrightarrow x(y+1)=2-y \Leftrightarrow$ $x=\frac{2-y}{y+1}$ - which is, in fact, $f(y)$. Now $\frac{2-y}{y+1}$ is defined for $y \in \mathbb{R}$ $\Leftrightarrow y \neq-1$. So the image of f is $(-\infty,-1) \cup(-1, \infty) \neq \mathbb{R}$ and f is not surjective. However, f is injective, because, for any $y \neq-1$, the only value of x for which $f(x)=y$ is $x=\frac{2-y}{y+1}$.
Note that in this example, the function f is its own inverse, but this does not always happen.

7 marks in total

Section B

4 marks

3 marks

1 mark

4 marks

3 marks

15 marks in total
10. \sim is reflexive if

$$
x \sim x \forall x \in X
$$

\sim is symmetric if

$$
x \sim y \Rightarrow y \sim x \forall x, y \in X
$$

\sim is transitive if

$$
(x \sim y \wedge y \sim z) \Rightarrow x \sim z \forall x, y, \in X
$$

a) \sim is reflexive because $x-x=0 \in \mathbb{Z}$ for all $x \in \mathbb{Q}$. It is symmetric because if $x-y \in \mathbb{Z}$ then $y-x=-(x-y) \in \mathbb{Z}$. It is transitive because if $x-y \in \mathbb{Z}$ and $y-z \in \mathbb{Z}$ then $x-z=(x-y)+(y-z) \in \mathbb{Z}$. So \sim is an equivalence relation.
b) \sim is not reflexive because, for example, if $x=\frac{1}{2} \in \mathbb{Q}$, then $x-2 x=-\frac{1}{2} \notin \mathbb{Z}$. So \sim is not an equivalence relation
c) If f is any polynomial with real coefficients, $f \sim f$ because $f-f=0$ is a real constant. So \sim is reflexive.
If f and g are any polynomials with real coefficients, $f \sim g \Leftrightarrow$ $f-g=c \in \mathbb{R} \Leftrightarrow g-f=-c \in \mathbb{R} \Rightarrow g \sim f$. So \sim is symmetric.
If f, g and h are any polynomials with real coefficients, and $f \sim g$ and $g \sim h$, then $f-g=c_{1} \in \mathbb{R}$ and $g-h=c_{2} \in R$ and hence $f-h=c_{1}+c_{2} \in \mathbb{R}$ and $f \sim h$ So \sim is transitive
Hence \sim is an equivalence relation.
The equivalence class of f_{1} is all polynomials $x+c$, for $c \in \mathbb{R}$. The equivalence class of f_{2} is all constant polynomials, that is, all polynomials of the form c, for $c \in \mathbb{R}$.

12(i) $|E \cup T \cup M|=|E|+|T|+|M|-|E \cap T|-|T \cap M|-\mid E \cap$ $M|+|E \cap T \cap M|$.
(ii)The number of people going on at least two tours is

15 marks in total
4 marks

4 marks

4 marks

$$
|(E \cap T) \cup(T \cap M) \cup(E \cap M)|
$$

The intersection of any two of the sets $E \cap T, T \cap M, E \cap M$ is $E \cap T \cap M$. So the intersection of all three of these sets is also $E \cap T \cap M$. Applying the inclusion-exclusion principle we have

$$
\begin{gathered}
|(E \cap T) \cup(T \cap M) \cup(E \cap M)| \\
=|E \cap T|+|T \cap M|+|E \cap M|-3|E \cap T \cap M|+|E \cap T \cap M| \\
=|E \cap T|+|T \cap M|+|E \cap M|-2|E \cap T \cap M| .
\end{gathered}
$$

(iii) Adding the equations from (i) and (ii) the terms $|E \cap T|+\mid T \cap$ $M|+|E \cap M|$ cancel and we obtain

$$
28+18=46=22+7+21-|E \cap M \cap T|=50-|E \cap M \cap T|
$$

So the number $|E \cap M \cap T|$ of people going on all three tours is 4 . (iv) $|E \cap(T \cup M)|=22-6=16$. Applying the inclusion-exclusion principle to the two sets $E \cap T$ and $E \cap M$ we have

$$
16=|E \cap M|+|E \cap T|-|E \cap M \cap T|=16+|E \cap T|-4
$$

So the number of people going on both the London Eye and Tower of London tours is

$$
|E \cap T|=16-12=4
$$

